IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5337-d427442.html
   My bibliography  Save this article

Study of Visualization Experiment on the Influence of Injector Nozzle Diameter on Diesel Engine Spray Ignition and Combustion Characteristics

Author

Listed:
  • Yuanzhi Tang

    (School of Automotive studies, Tongji University, Shanghai 201804, China)

  • Diming Lou

    (School of Automotive studies, Tongji University, Shanghai 201804, China)

  • Chengguan Wang

    (School of Automotive studies, Tongji University, Shanghai 201804, China)

  • Pi-qiang Tan

    (School of Automotive studies, Tongji University, Shanghai 201804, China)

  • Zhiyuan Hu

    (School of Automotive studies, Tongji University, Shanghai 201804, China)

  • Yunhua Zhang

    (School of Automotive studies, Tongji University, Shanghai 201804, China)

  • Liang Fang

    (School of Automotive studies, Tongji University, Shanghai 201804, China)

Abstract

The elementary research of spray and combustion is of great significance to the development of compactness of modern diesel engines. In this paper, three injectors with different nozzle orifice diameters (0.23 mm, 0.27 mm and 0.31 mm) were used to study the diesel spray, ignition and flame-wall impingement visualization experiment. This paper studied the influence of different nozzle sizes on the trends of spray, ignition and flame diffusion under the flame-wall impinging combustion and used the flame luminosity to characterize the soot generation in combustion. By analyzing the quantitative data, such as spray penetration, ignition delay, flame area and flame luminosity systematically, it was shown that the smaller nozzle benefitted diesel combustion to some extent. The 0.23 mm nozzle injector in these experiments had the best fuel-air mixing effect under 800 K. The length of the spray liquid under the 0.23 mm nozzle condition was 19% and 23% shorter than that of 0.27 and 0.31 mm, respectively. Smaller orifice size of the nozzle can help to reach the gas ignition conditions more effectively. Without liquid fuel impingement, the simple flame-wall impingement will not change the trend of the nozzle influence on combustion. The total amount of accumulated soot according to the approximate luminosity spatial integral calculation in the combustion process was reduced by 37% and 43% under 0.27 mm and 0.23 mm nozzles, respectively, which is favorable for the clean combustion of diesel engines.

Suggested Citation

  • Yuanzhi Tang & Diming Lou & Chengguan Wang & Pi-qiang Tan & Zhiyuan Hu & Yunhua Zhang & Liang Fang, 2020. "Study of Visualization Experiment on the Influence of Injector Nozzle Diameter on Diesel Engine Spray Ignition and Combustion Characteristics," Energies, MDPI, vol. 13(20), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5337-:d:427442
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5337/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5337/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Xiangang & Huang, Zuohua & Zhang, Wu & Kuti, Olawole Abiola & Nishida, Keiya, 2011. "Effects of ultra-high injection pressure and micro-hole nozzle on flame structure and soot formation of impinging diesel spray," Applied Energy, Elsevier, vol. 88(5), pages 1620-1628, May.
    2. Merola, Simona S. & Vaglieco, Bianca M., 2009. "Optical investigations of fuel deposition burning in ported fuel injection (PFI) spark-ignition (SI) engine," Energy, Elsevier, vol. 34(12), pages 2108-2115.
    3. Ma, Yinjie & Huang, Sheng & Huang, Ronghua & Zhang, Yu & Xu, Shijie, 2017. "Ignition and combustion characteristics of n-pentanol–diesel blends in a constant volume chamber," Applied Energy, Elsevier, vol. 185(P1), pages 519-530.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaroslaw Krzywanski & Wojciech Nowak & Karol Sztekler, 2022. "Novel Combustion Techniques for Clean Energy," Energies, MDPI, vol. 15(13), pages 1-3, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chengguan Wang & Xiaozhi Qi & Tao Wang & Diming Lou & Piqiang Tan & Zhiyuan Hu & Liang Fang & Rong Yang, 2023. "Role of Altitude in Influencing the Spray Combustion Characteristics of a Heavy-Duty Diesel Engine in a Constant Volume Combustion Chamber. Part I: Free Diesel Jet," Energies, MDPI, vol. 16(12), pages 1-25, June.
    2. Yuanzhi Tang & Diming Lou & Chengguan Wang & Piqiang Tan & Zhiyuan Hu & Yunhua Zhang & Liang Fang, 2020. "Joint Study of Impingement Combustion Simulation and Diesel Visualization Experiment of Variable Injection Pressure in Constant Volume Vessel," Energies, MDPI, vol. 13(23), pages 1-19, November.
    3. Huang, Weidi & Wu, Zhijun & Gao, Ya & Zhang, Lin, 2015. "Effect of shock waves on the evolution of high-pressure fuel jets," Applied Energy, Elsevier, vol. 159(C), pages 442-448.
    4. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Du, Wei & Zhang, Qiankun & Zhang, Zheng & Lou, Juejue & Bao, Wenhua, 2018. "Effects of injection pressure on ignition and combustion characteristics of impinging diesel spray," Applied Energy, Elsevier, vol. 226(C), pages 1163-1168.
    6. Kang, Wooseok & Choi, Byungchul & Jung, Seunghun & Park, Suhan, 2018. "PM and NOx reduction characteristics of LNT/DPF+SCR/DPF hybrid system," Energy, Elsevier, vol. 143(C), pages 439-447.
    7. Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
    8. Bendu, Harisankar & Murugan, S., 2014. "Homogeneous charge compression ignition (HCCI) combustion: Mixture preparation and control strategies in diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 732-746.
    9. Shi, Zhicheng & Lee, Chia-fon & Wu, Han & Li, Haiying & Wu, Yang & Zhang, Lu & Bo, Yaqing & Liu, Fushui, 2020. "Effect of injection pressure on the impinging spray and ignition characteristics of the heavy-duty diesel engine under low-temperature conditions," Applied Energy, Elsevier, vol. 262(C).
    10. Zhang, Jibao & Zhang, Xin & Wang, Tao & Hou, Xiaosen, 2019. "A numerical study on jet characteristics under different supercritical conditions for engine applications," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    11. Ağbulut, Ümit & Yeşilyurt, Murat Kadir & Sarıdemir, Suat, 2021. "Wastes to energy: Improving the poor properties of waste tire pyrolysis oil with waste cooking oil methyl ester and waste fusel alcohol – A detailed assessment on the combustion, emission, and perform," Energy, Elsevier, vol. 222(C).
    12. Sidhu, Manpreet Singh & Roy, Murari Mohon & Wang, Wilson, 2018. "Glycerine emulsions of diesel-biodiesel blends and their performance and emissions in a diesel engine," Applied Energy, Elsevier, vol. 230(C), pages 148-159.
    13. Pachiannan, Tamilselvan & Zhong, Wenjun & Xuan, Tiemin & Li, Bei & He, Zhixia & Wang, Qian & Yu, Xiong, 2019. "Simultaneous study on spray liquid length, ignition and combustion characteristics of diesel and hydrogenated catalytic biodiesel in a constant volume combustion chamber," Renewable Energy, Elsevier, vol. 140(C), pages 761-771.
    14. Pan, Mingzhang & Zheng, Zeyuan & Huang, Rong & Zhou, Xiaorong & Huang, Haozhong & Pan, Jiaying & Chen, Zhaohui, 2019. "Reduction in PM and NOX of a diesel engine integrated with n-octanol fuel addition and exhaust gas recirculation," Energy, Elsevier, vol. 187(C).
    15. Zhang, Kesong & Liang, Zheng & Wang, Jianxin & Wang, Zhiming, 2013. "Diesel diffusion flame simulation using reduced n-heptane oxidation mechanism," Applied Energy, Elsevier, vol. 105(C), pages 223-228.
    16. Lei Zhang & Tiexiong Su & Yangang Zhang & Fukang Ma & Jinguan Yin & Yaonan Feng, 2017. "Numerical Investigation of the Effects of Split Injection Strategies on Combustion and Emission in an Opposed-Piston, Opposed-Cylinder (OPOC) Two-Stroke Diesel Engine," Energies, MDPI, vol. 10(5), pages 1-17, May.
    17. Haifeng Liu & Beiling Chen & Lei Feng & Yu Wang & Wentao Yi & Mingfa Yao, 2018. "Study on Fuel Distribution of Wall-Impinging Diesel Spray under Different Wall Temperatures by Laser-Induced Exciplex Fluorescence (LIEF)," Energies, MDPI, vol. 11(5), pages 1-14, May.
    18. Ayhan, Vezir & Ece, Yılmaz Mert, 2020. "New application to reduce NOx emissions of diesel engines: Electronically controlled direct water injection at compression stroke," Applied Energy, Elsevier, vol. 260(C).
    19. Mohankumar, S. & Senthilkumar, P., 2017. "Particulate matter formation and its control methodologies for diesel engine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1227-1238.
    20. Yang, Ziming & Fei, Chunguang & Li, Yikai & Wang, Dongfang & Sun, Chenhan, 2023. "Experimental study of the effect of physical and chemical properties of alcohols on the spray combustion characteristics of alcohol-diesel blended fuels," Energy, Elsevier, vol. 263(PE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5337-:d:427442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.