IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5315-d427032.html
   My bibliography  Save this article

Maximization of Distribution Network Hosting Capacity through Optimal Grid Reconfiguration and Distributed Generation Capacity Allocation/Control

Author

Listed:
  • Rade Čađenović

    (Department of Power Engineering, University of Split-FESB, 21000 Split, Croatia)

  • Damir Jakus

    (Department of Power Engineering, University of Split-FESB, 21000 Split, Croatia)

Abstract

High penetration of small-scale distributed energy sources into the distribution network increase negative impacts related to power quality causing adverse conditions. This paper presents a mathematical model that maximizes distribution network hosting capacity through optimal distributed generation capacity allocation and control and grid reconfiguration. In addition to this, the model includes on-load tap changer control for stabilization of grid voltage conditions primarily in grid operating conditions related to voltage rise problems, which can limit grid hosting capacity. Moreover, the objective function allows the possibility of energy transfer between distribution and transmission grids. The proposed model considers alternative grid connection points for distributed generation and determines optimal connection points as well as install capacity while considering network operating limits. The model is cast as a multiperiod second-order cone linear program and involves aspects of active power management. The model is tested on a modified IEEE 33 bus test network.

Suggested Citation

  • Rade Čađenović & Damir Jakus, 2020. "Maximization of Distribution Network Hosting Capacity through Optimal Grid Reconfiguration and Distributed Generation Capacity Allocation/Control," Energies, MDPI, vol. 13(20), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5315-:d:427032
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5315/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5315/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Magdalena Bartecka & Grazia Barchi & Józef Paska, 2020. "Time-Series PV Hosting Capacity Assessment with Storage Deployment," Energies, MDPI, vol. 13(10), pages 1-20, May.
    2. Tiago Elias Castelo de Oliveira & Math Bollen & Paulo Fernando Ribeiro & Pedro M. S. de Carvalho & Antônio C. Zambroni & Benedito D. Bonatto, 2019. "The Concept of Dynamic Hosting Capacity for Distributed Energy Resources: Analytics and Practical Considerations," Energies, MDPI, vol. 12(13), pages 1-18, July.
    3. Baringo, L. & Conejo, A.J., 2011. "Wind power investment within a market environment," Applied Energy, Elsevier, vol. 88(9), pages 3239-3247.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md Tariqul Islam & M. J. Hossain, 2023. "Artificial Intelligence for Hosting Capacity Analysis: A Systematic Literature Review," Energies, MDPI, vol. 16(4), pages 1-33, February.
    2. Javier Contreras & Gregorio Muñoz-Delgado, 2021. "Distributed Power Generation Scheduling, Modeling, and Expansion Planning," Energies, MDPI, vol. 14(22), pages 1-2, November.
    3. Yih-Der Lee & Wei-Chen Lin & Jheng-Lun Jiang & Jia-Hao Cai & Wei-Tzer Huang & Kai-Chao Yao, 2021. "Optimal Individual Phase Voltage Regulation Strategies in Active Distribution Networks with High PV Penetration Using the Sparrow Search Algorithm," Energies, MDPI, vol. 14(24), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vincent Umoh & Innocent Davidson & Abayomi Adebiyi & Unwana Ekpe, 2023. "Methods and Tools for PV and EV Hosting Capacity Determination in Low Voltage Distribution Networks—A Review," Energies, MDPI, vol. 16(8), pages 1-25, April.
    2. Thomas Kleinert & Martin Schmidt, 2023. "Why there is no need to use a big-M in linear bilevel optimization: a computational study of two ready-to-use approaches," Computational Management Science, Springer, vol. 20(1), pages 1-12, December.
    3. Costa, Vinicius Braga Ferreira da & Bonatto, Benedito Donizeti, 2023. "Cutting-edge public policy proposal to maximize the long-term benefits of distributed energy resources," Renewable Energy, Elsevier, vol. 203(C), pages 357-372.
    4. Jakub Jurasz & Jerzy Mikulik & Paweł B. Dąbek & Mohammed Guezgouz & Bartosz Kaźmierczak, 2021. "Complementarity and ‘Resource Droughts’ of Solar and Wind Energy in Poland: An ERA5-Based Analysis," Energies, MDPI, vol. 14(4), pages 1-24, February.
    5. Arjmand, Reza & Rahimiyan, Morteza, 2016. "Statistical analysis of a competitive day-ahead market coupled with correlated wind production and electric load," Applied Energy, Elsevier, vol. 161(C), pages 153-167.
    6. Jadidoleslam, Morteza & Ebrahimi, Akbar & Latify, Mohammad Amin, 2017. "Probabilistic transmission expansion planning to maximize the integration of wind power," Renewable Energy, Elsevier, vol. 114(PB), pages 866-878.
    7. Magdalena Bartecka & Grazia Barchi & Józef Paska, 2020. "Time-Series PV Hosting Capacity Assessment with Storage Deployment," Energies, MDPI, vol. 13(10), pages 1-20, May.
    8. Dorea Chin & Afzal Siddiqui, 2014. "Capacity expansion and forward contracting in a duopolistic power sector," Computational Management Science, Springer, vol. 11(1), pages 57-86, January.
    9. Exizidis, Lazaros & Kazempour, S. Jalal & Pinson, Pierre & de Greve, Zacharie & Vallée, François, 2016. "Sharing wind power forecasts in electricity markets: A numerical analysis," Applied Energy, Elsevier, vol. 176(C), pages 65-73.
    10. Xie, Shiwei & Hu, Zhijian & Zhou, Daming & Li, Yan & Kong, Shunfei & Lin, Weiwei & Zheng, Yunfei, 2018. "Multi-objective active distribution networks expansion planning by scenario-based stochastic programming considering uncertain and random weight of network," Applied Energy, Elsevier, vol. 219(C), pages 207-225.
    11. Feijoo, Felipe & Das, Tapas K., 2014. "Design of Pareto optimal CO2 cap-and-trade policies for deregulated electricity networks," Applied Energy, Elsevier, vol. 119(C), pages 371-383.
    12. Lim-Wavde, Kustini & Zhai, Haibo & Kauffman, Robert J. & Rubin, Edward S., 2018. "Assessing carbon pollution standards: Electric power generation pathways and their water impacts," Energy Policy, Elsevier, vol. 120(C), pages 714-733.
    13. Birgir Freyr Ragnarsson & Gudmundur V. Oddsson & Runar Unnthorsson & Birgir Hrafnkelsson, 2015. "Levelized Cost of Energy Analysis of a Wind Power Generation System at Búrfell in Iceland," Energies, MDPI, vol. 8(9), pages 1-22, September.
    14. Yu, Hao & Wei, Yi-Ming & Tang, Bao-Jun & Mi, Zhifu & Pan, Su-Yan, 2016. "Assessment on the research trend of low-carbon energy technology investment: A bibliometric analysis," Applied Energy, Elsevier, vol. 184(C), pages 960-970.
    15. Bartłomiej Mroczek & Paweł Pijarski, 2022. "Machine Learning in Operating of Low Voltage Future Grid," Energies, MDPI, vol. 15(15), pages 1-30, July.
    16. Xie, Kaigui & Dong, Jizhe & Singh, Chanan & Hu, Bo, 2016. "Optimal capacity and type planning of generating units in a bundled wind–thermal generation system," Applied Energy, Elsevier, vol. 164(C), pages 200-210.
    17. Baringo, L. & Conejo, A.J., 2013. "Correlated wind-power production and electric load scenarios for investment decisions," Applied Energy, Elsevier, vol. 101(C), pages 475-482.
    18. Sánchez, David & Bortkiewicz, Anna & Rodríguez, José M. & Martínez, Gonzalo S. & Gavagnin, Giacomo & Sánchez, Tomás, 2016. "A methodology to identify potential markets for small-scale solar thermal power generators," Applied Energy, Elsevier, vol. 169(C), pages 287-300.
    19. Contreras, Javier & Rodríguez, Yeny E., 2014. "GARCH-based put option valuation to maximize benefit of wind investors," Applied Energy, Elsevier, vol. 136(C), pages 259-268.
    20. Suomalainen, Kiti & Pritchard, Geoffrey & Sharp, Basil & Yuan, Ziqi & Zakeri, Golbon, 2015. "Correlation analysis on wind and hydro resources with electricity demand and prices in New Zealand," Applied Energy, Elsevier, vol. 137(C), pages 445-462.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5315-:d:427032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.