IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v280y2020ics0306261920311351.html
   My bibliography  Save this article

Dynamic hosting capacity analysis for distributed photovoltaic resources—Framework and case study

Author

Listed:
  • Jain, Akshay Kumar
  • Horowitz, Kelsey
  • Ding, Fei
  • Sedzro, Kwami Senam
  • Palmintier, Bryan
  • Mather, Barry
  • Jain, Himanshu

Abstract

Distributed photovoltaic systems can cause adverse distribution system impacts, including voltage violations at customer locations and thermal overload of lines, transformers, and other equipment resulting from high current. The installed capacity at which violations first occur and above which would require system upgrades is called the hosting capacity. Current static methods for determining hosting capacity tend to either consider infrequent worst-case snapshots in time and/or capture coarse time and spatial resolution. Because the duration of violations cannot be captured with these traditional methods, the metric thresholds used in these studies conservatively use the strictest constraints given in operating standards, even though both worse voltage performance and higher overloads may be temporarily acceptable. However, assessing the full details requires accurately capturing time-dependence, voltage-regulating equipment operations, and performance of advanced controls-based mitigation techniques. In this paper, we propose a dynamic distributed photovoltaic hosting capacity methodology to address these issues by conducting power flow analysis for a full year. A key contribution is the formulation of time aware metrics to take these annual results and identify the hosting capacity. Through a case study, we show that this approach can more fully capture grid impacts of distributed photovoltaic than traditional methods and the dynamic hosting capacity was 60%–200% higher than the static hosting capacity in this case study.

Suggested Citation

  • Jain, Akshay Kumar & Horowitz, Kelsey & Ding, Fei & Sedzro, Kwami Senam & Palmintier, Bryan & Mather, Barry & Jain, Himanshu, 2020. "Dynamic hosting capacity analysis for distributed photovoltaic resources—Framework and case study," Applied Energy, Elsevier, vol. 280(C).
  • Handle: RePEc:eee:appene:v:280:y:2020:i:c:s0306261920311351
    DOI: 10.1016/j.apenergy.2020.115633
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920311351
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115633?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tiago Elias Castelo de Oliveira & Math Bollen & Paulo Fernando Ribeiro & Pedro M. S. de Carvalho & Antônio C. Zambroni & Benedito D. Bonatto, 2019. "The Concept of Dynamic Hosting Capacity for Distributed Energy Resources: Analytics and Practical Considerations," Energies, MDPI, vol. 12(13), pages 1-18, July.
    2. Ismael, Sherif M. & Abdel Aleem, Shady H.E. & Abdelaziz, Almoataz Y. & Zobaa, Ahmed F., 2019. "State-of-the-art of hosting capacity in modern power systems with distributed generation," Renewable Energy, Elsevier, vol. 130(C), pages 1002-1020.
    3. Ji, Haoran & Wang, Chengshan & Li, Peng & Zhao, Jinli & Song, Guanyu & Ding, Fei & Wu, Jianzhong, 2018. "A centralized-based method to determine the local voltage control strategies of distributed generator operation in active distribution networks," Applied Energy, Elsevier, vol. 228(C), pages 2024-2036.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rajabi, A. & Elphick, S. & David, J. & Pors, A. & Robinson, D., 2022. "Innovative approaches for assessing and enhancing the hosting capacity of PV-rich distribution networks: An Australian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Jin-Sol Song & Ji-Soo Kim & Barry Mather & Chul-Hwan Kim, 2021. "Hosting Capacity Improvement Method Using MV–MV Solid-State-Transformer," Energies, MDPI, vol. 14(3), pages 1-12, January.
    3. Md Tariqul Islam & M. J. Hossain, 2023. "Artificial Intelligence for Hosting Capacity Analysis: A Systematic Literature Review," Energies, MDPI, vol. 16(4), pages 1-33, February.
    4. Jude Suchithra & Duane Robinson & Amin Rajabi, 2023. "Hosting Capacity Assessment Strategies and Reinforcement Learning Methods for Coordinated Voltage Control in Electricity Distribution Networks: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
    5. Zabihinia Gerdroodbari, Yasin & Khorasany, Mohsen & Razzaghi, Reza, 2022. "Dynamic PQ Operating Envelopes for prosumers in distribution networks," Applied Energy, Elsevier, vol. 325(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Costa, Vinicius Braga Ferreira da & Bonatto, Benedito Donizeti, 2023. "Cutting-edge public policy proposal to maximize the long-term benefits of distributed energy resources," Renewable Energy, Elsevier, vol. 203(C), pages 357-372.
    2. Vincent Umoh & Innocent Davidson & Abayomi Adebiyi & Unwana Ekpe, 2023. "Methods and Tools for PV and EV Hosting Capacity Determination in Low Voltage Distribution Networks—A Review," Energies, MDPI, vol. 16(8), pages 1-25, April.
    3. Magdalena Bartecka & Grazia Barchi & Józef Paska, 2020. "Time-Series PV Hosting Capacity Assessment with Storage Deployment," Energies, MDPI, vol. 13(10), pages 1-20, May.
    4. Mak, Davye & Choeum, Daranith & Choi, Dae-Hyun, 2020. "Sensitivity analysis of volt-VAR optimization to data changes in distribution networks with distributed energy resources," Applied Energy, Elsevier, vol. 261(C).
    5. Li, Peng & Ji, Haoran & Yu, Hao & Zhao, Jinli & Wang, Chengshan & Song, Guanyu & Wu, Jianzhong, 2019. "Combined decentralized and local voltage control strategy of soft open points in active distribution networks," Applied Energy, Elsevier, vol. 241(C), pages 613-624.
    6. Enrico Dalla Maria & Mattia Secchi & David Macii, 2021. "A Flexible Top-Down Data-Driven Stochastic Model for Synthetic Load Profiles Generation," Energies, MDPI, vol. 15(1), pages 1-20, December.
    7. Bartłomiej Mroczek & Paweł Pijarski, 2022. "Machine Learning in Operating of Low Voltage Future Grid," Energies, MDPI, vol. 15(15), pages 1-30, July.
    8. Md Tariqul Islam & M. J. Hossain, 2023. "Artificial Intelligence for Hosting Capacity Analysis: A Systematic Literature Review," Energies, MDPI, vol. 16(4), pages 1-33, February.
    9. Muhyaddin Rawa & Abdullah Abusorrah & Yusuf Al-Turki & Martin Calasan & Mihailo Micev & Ziad M. Ali & Saad Mekhilef & Hussain Bassi & Hatem Sindi & Shady H. E. Abdel Aleem, 2022. "Estimation of Parameters of Different Equivalent Circuit Models of Solar Cells and Various Photovoltaic Modules Using Hybrid Variants of Honey Badger Algorithm and Artificial Gorilla Troops Optimizer," Mathematics, MDPI, vol. 10(7), pages 1-31, March.
    10. Ramitha Dissanayake & Akila Wijethunge & Janaka Wijayakulasooriya & Janaka Ekanayake, 2022. "Optimizing PV-Hosting Capacity with the Integrated Employment of Dynamic Line Rating and Voltage Regulation," Energies, MDPI, vol. 15(22), pages 1-19, November.
    11. Lewis Waswa & Munyaradzi Justice Chihota & Bernard Bekker, 2021. "A Probabilistic Conductor Size Selection Framework for Active Distribution Networks," Energies, MDPI, vol. 14(19), pages 1-19, October.
    12. Yao, Hongmin & Qin, Wenping & Jing, Xiang & Zhu, Zhilong & Wang, Ke & Han, Xiaoqing & Wang, Peng, 2022. "Possibilistic evaluation of photovoltaic hosting capacity on distribution networks under uncertain environment," Applied Energy, Elsevier, vol. 324(C).
    13. C. Birk Jones & Matthew Lave & Matthew J. Reno & Rachid Darbali-Zamora & Adam Summers & Shamina Hossain-McKenzie, 2020. "Volt-Var Curve Reactive Power Control Requirements and Risks for Feeders with Distributed Roof-Top Photovoltaic Systems," Energies, MDPI, vol. 13(17), pages 1-17, August.
    14. Ahmed I. Omar & Ziad M. Ali & Mostafa Al-Gabalawy & Shady H. E. Abdel Aleem & Mujahed Al-Dhaifallah, 2020. "Multi-Objective Environmental Economic Dispatch of an Electricity System Considering Integrated Natural Gas Units and Variable Renewable Energy Sources," Mathematics, MDPI, vol. 8(7), pages 1-37, July.
    15. Ibrahim Mohamed Diaaeldin & Mahmoud A. Attia & Amr K. Khamees & Othman A. M. Omar & Ahmed O. Badr, 2023. "A Novel Multiobjective Formulation for Optimal Wind Speed Modeling via a Mixture Probability Density Function," Mathematics, MDPI, vol. 11(6), pages 1-19, March.
    16. Andrei M. Tudose & Dorian O. Sidea & Irina I. Picioroaga & Nicolae Anton & Constantin Bulac, 2023. "Increasing Distributed Generation Hosting Capacity Based on a Sequential Optimization Approach Using an Improved Salp Swarm Algorithm," Mathematics, MDPI, vol. 12(1), pages 1-22, December.
    17. Muhyaddin Rawa & Abdullah Abusorrah & Yusuf Al-Turki & Saad Mekhilef & Mostafa H. Mostafa & Ziad M. Ali & Shady H. E. Abdel Aleem, 2020. "Optimal Allocation and Economic Analysis of Battery Energy Storage Systems: Self-Consumption Rate and Hosting Capacity Enhancement for Microgrids with High Renewable Penetration," Sustainability, MDPI, vol. 12(23), pages 1-25, December.
    18. Hartvigsson, Elias & Odenberger, Mikael & Chen, Peiyuan & Nyholm, Emil, 2021. "Estimating national and local low-voltage grid capacity for residential solar photovoltaic in Sweden, UK and Germany," Renewable Energy, Elsevier, vol. 171(C), pages 915-926.
    19. Gupta, Ruchi & Pena-Bello, Alejandro & Streicher, Kai Nino & Roduner, Cattia & Farhat, Yamshid & Thöni, David & Patel, Martin Kumar & Parra, David, 2021. "Spatial analysis of distribution grid capacity and costs to enable massive deployment of PV, electric mobility and electric heating," Applied Energy, Elsevier, vol. 287(C).
    20. Se-Heon Lim & Sung-Guk Yoon, 2022. "Dynamic DNR and Solar PV Smart Inverter Control Scheme Using Heterogeneous Multi-Agent Deep Reinforcement Learning," Energies, MDPI, vol. 15(23), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:280:y:2020:i:c:s0306261920311351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.