IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4303-d401228.html
   My bibliography  Save this article

Volt-Var Curve Reactive Power Control Requirements and Risks for Feeders with Distributed Roof-Top Photovoltaic Systems

Author

Listed:
  • C. Birk Jones

    (Sandia National Laboratories, P.O. Box 5800 MS 1033, Albuquerque, NM 87185, USA)

  • Matthew Lave

    (Sandia National Laboratories, P.O. Box 5800 MS 1033, Albuquerque, NM 87185, USA)

  • Matthew J. Reno

    (Sandia National Laboratories, P.O. Box 5800 MS 1033, Albuquerque, NM 87185, USA)

  • Rachid Darbali-Zamora

    (Sandia National Laboratories, P.O. Box 5800 MS 1033, Albuquerque, NM 87185, USA)

  • Adam Summers

    (Sandia National Laboratories, P.O. Box 5800 MS 1033, Albuquerque, NM 87185, USA)

  • Shamina Hossain-McKenzie

    (Sandia National Laboratories, P.O. Box 5800 MS 1033, Albuquerque, NM 87185, USA)

Abstract

The benefits and risks associated with Volt-Var Curve (VVC) control for management of voltages in electric feeders with distributed, roof-top photovoltaic (PV) can be defined using a stochastic hosting capacity analysis methodology. Although past work showed that a PV inverter’s reactive power can improve grid voltages for large PV installations, this study adds to the past research by evaluating the control method’s impact (both good and bad) when deployed throughout the feeder within small, distributed PV systems. The stochastic hosting capacity simulation effort iterated through hundreds of load and PV generation scenarios and various control types. The simulations also tested the impact of VVCs with tampered settings to understand the potential risks associated with a cyber-attack on all of the PV inverters scattered throughout a feeder. The simulation effort found that the VVC can have an insignificant role in managing the voltage when deployed in distributed roof-top PV inverters. This type of integration strategy will result in little to no harm when subjected to a successful cyber-attack that alters the VVC settings.

Suggested Citation

  • C. Birk Jones & Matthew Lave & Matthew J. Reno & Rachid Darbali-Zamora & Adam Summers & Shamina Hossain-McKenzie, 2020. "Volt-Var Curve Reactive Power Control Requirements and Risks for Feeders with Distributed Roof-Top Photovoltaic Systems," Energies, MDPI, vol. 13(17), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4303-:d:401228
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4303/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4303/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ismael, Sherif M. & Abdel Aleem, Shady H.E. & Abdelaziz, Almoataz Y. & Zobaa, Ahmed F., 2019. "State-of-the-art of hosting capacity in modern power systems with distributed generation," Renewable Energy, Elsevier, vol. 130(C), pages 1002-1020.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Toni Cantero Gubert & Alba Colet & Lluc Canals Casals & Cristina Corchero & José Luís Domínguez-García & Amelia Alvarez de Sotomayor & William Martin & Yves Stauffer & Pierre-Jean Alet, 2021. "Adaptive Volt-Var Control Algorithm to Grid Strength and PV Inverter Characteristics," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    2. Venizelos Efthymiou & Christina N. Papadimitriou, 2022. "Smart Photovoltaic Energy Systems for a Sustainable Future," Energies, MDPI, vol. 15(18), pages 1-3, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md Tariqul Islam & M. Jahangir Hossain & Md. Ahasan Habib & Muhammad Ahsan Zamee, 2025. "Adaptive Hosting Capacity Forecasting in Distribution Networks with Distributed Energy Resources," Energies, MDPI, vol. 18(2), pages 1-25, January.
    2. Lewis Waswa & Munyaradzi Justice Chihota & Bernard Bekker, 2021. "A Probabilistic Conductor Size Selection Framework for Active Distribution Networks," Energies, MDPI, vol. 14(19), pages 1-19, October.
    3. Yao, Hongmin & Qin, Wenping & Jing, Xiang & Zhu, Zhilong & Wang, Ke & Han, Xiaoqing & Wang, Peng, 2022. "Possibilistic evaluation of photovoltaic hosting capacity on distribution networks under uncertain environment," Applied Energy, Elsevier, vol. 324(C).
    4. Ahmed I. Omar & Ziad M. Ali & Mostafa Al-Gabalawy & Shady H. E. Abdel Aleem & Mujahed Al-Dhaifallah, 2020. "Multi-Objective Environmental Economic Dispatch of an Electricity System Considering Integrated Natural Gas Units and Variable Renewable Energy Sources," Mathematics, MDPI, vol. 8(7), pages 1-37, July.
    5. Costa, Vinicius Braga Ferreira da & Bonatto, Benedito Donizeti, 2023. "Cutting-edge public policy proposal to maximize the long-term benefits of distributed energy resources," Renewable Energy, Elsevier, vol. 203(C), pages 357-372.
    6. Andrei M. Tudose & Dorian O. Sidea & Irina I. Picioroaga & Nicolae Anton & Constantin Bulac, 2023. "Increasing Distributed Generation Hosting Capacity Based on a Sequential Optimization Approach Using an Improved Salp Swarm Algorithm," Mathematics, MDPI, vol. 12(1), pages 1-21, December.
    7. Muhyaddin Rawa & Abdullah Abusorrah & Yusuf Al-Turki & Saad Mekhilef & Mostafa H. Mostafa & Ziad M. Ali & Shady H. E. Abdel Aleem, 2020. "Optimal Allocation and Economic Analysis of Battery Energy Storage Systems: Self-Consumption Rate and Hosting Capacity Enhancement for Microgrids with High Renewable Penetration," Sustainability, MDPI, vol. 12(23), pages 1-25, December.
    8. Gupta, Ruchi & Pena-Bello, Alejandro & Streicher, Kai Nino & Roduner, Cattia & Farhat, Yamshid & Thöni, David & Patel, Martin Kumar & Parra, David, 2021. "Spatial analysis of distribution grid capacity and costs to enable massive deployment of PV, electric mobility and electric heating," Applied Energy, Elsevier, vol. 287(C).
    9. Chathurangi, D. & Jayatunga, U. & Perera, S., 2022. "Recent investigations on the evaluation of solar PV hosting capacity in LV distribution networks constrained by voltage rise," Renewable Energy, Elsevier, vol. 199(C), pages 11-20.
    10. Hwang, Hyunkyeong & Yoon, Ahyun & Yoon, Yongtae & Moon, Seungil, 2023. "Demand response of HVAC systems for hosting capacity improvement in distribution networks: A comprehensive review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    11. Faris E. Alfaris, 2023. "A Sensorless Intelligent System to Detect Dust on PV Panels for Optimized Cleaning Units," Energies, MDPI, vol. 16(3), pages 1-17, January.
    12. Vincent Umoh & Innocent Davidson & Abayomi Adebiyi & Unwana Ekpe, 2023. "Methods and Tools for PV and EV Hosting Capacity Determination in Low Voltage Distribution Networks—A Review," Energies, MDPI, vol. 16(8), pages 1-25, April.
    13. Minal S. Salunke & Ramesh S. Karnik & Angadi B. Raju & Vinayak N. Gaitonde, 2024. "Analysis of Transmission System Stability with Distribution Generation Supplying Induction Motor Loads," Mathematics, MDPI, vol. 12(1), pages 1-29, January.
    14. Sherif M. Ismael & Shady H. E. Abdel Aleem & Almoataz Y. Abdelaziz & Ahmed F. Zobaa, 2019. "Probabilistic Hosting Capacity Enhancement in Non-Sinusoidal Power Distribution Systems Using a Hybrid PSOGSA Optimization Algorithm," Energies, MDPI, vol. 12(6), pages 1-23, March.
    15. Rajabi, A. & Elphick, S. & David, J. & Pors, A. & Robinson, D., 2022. "Innovative approaches for assessing and enhancing the hosting capacity of PV-rich distribution networks: An Australian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    16. Geovane L. Reis & Danilo I. Brandao & João H. Oliveira & Lucas S. Araujo & Braz J. Cardoso Filho, 2022. "Case Study of Single-Controllable Microgrid: A Practical Implementation," Energies, MDPI, vol. 15(17), pages 1-22, September.
    17. Wei Sun & Sam Harrison & Gareth P. Harrison, 2020. "Value of Local Offshore Renewable Resource Diversity for Network Hosting Capacity," Energies, MDPI, vol. 13(22), pages 1-20, November.
    18. Magdalena Bartecka & Grazia Barchi & Józef Paska, 2020. "Time-Series PV Hosting Capacity Assessment with Storage Deployment," Energies, MDPI, vol. 13(10), pages 1-20, May.
    19. Martin Ćalasan & Tatjana Konjić & Katarina Kecojević & Lazar Nikitović, 2020. "Optimal Allocation of Static Var Compensators in Electric Power Systems," Energies, MDPI, vol. 13(12), pages 1-24, June.
    20. Emad M. Ahmed & Rajarajeswari Rathinam & Suchitra Dayalan & George S. Fernandez & Ziad M. Ali & Shady H. E. Abdel Aleem & Ahmed I. Omar, 2021. "A Comprehensive Analysis of Demand Response Pricing Strategies in a Smart Grid Environment Using Particle Swarm Optimization and the Strawberry Optimization Algorithm," Mathematics, MDPI, vol. 9(18), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4303-:d:401228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.