IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i19p5186-d423956.html
   My bibliography  Save this article

Combustion Modeling and Simulation of Recycled Anode-off-Gas from Solid Oxide Fuel Cell

Author

Listed:
  • Sataish Asghar Kashmiri

    (Department of Chemical Engineering, University of Engineering and Technology, G.T. Road Lahore 54890, Pakistan
    Department of Chemical Engineering, Minhaj University, Township Lahore 54770, Pakistan)

  • Muhammad Wasim Tahir

    (Department of Chemical Engineering, University of Engineering and Technology, G.T. Road Lahore 54890, Pakistan)

  • Umer Afzal

    (Department of Chemical Engineering, University of Engineering and Technology, G.T. Road Lahore 54890, Pakistan)

Abstract

A solid oxide fuel cell (SOFC) is popular amongst other fuel cell technologies due to fuel flexibility, low cost, and stability. Because of difficulties involved in the handling of hydrogen, onsite hydrogen production is considered for many small- and large-scale applications. It involves an integrated setup consisting of a reformer, combustor, and fuel cell stack. Being operated at high temperature, gases leaving SOFC contain a significant amount of thermal energy which can be utilized within the integrated reforming process. In addition, anode-off-gas (AOG) from SOFC contains unreacted hydrogen which can be utilized as fuel in an integrated combustor thereby increasing combustor efficiency. For effective integration of a combustor, reformer, and power generator, modeling and simulation is of great utility. In the present work, a 3D model of an integrated combustor unit is developed and implemented into the computational fluid dynamics (CFD) simulation package ANSYS FLUENT ® . Main objective of this work is to prove the concept of enhancement in combustor performance by utilizing AOG from SOFC as a supplementary fuel in the combustor. Simulation results show a significant increase in combustor temperature and heat dissipated to the reformer side with AOG utilization. Up to an 18% saving in fuel (natural gas), used in combustor to supply heat to the reformer, is observed.

Suggested Citation

  • Sataish Asghar Kashmiri & Muhammad Wasim Tahir & Umer Afzal, 2020. "Combustion Modeling and Simulation of Recycled Anode-off-Gas from Solid Oxide Fuel Cell," Energies, MDPI, vol. 13(19), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5186-:d:423956
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/19/5186/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/19/5186/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Yun & Chen, Ken S. & Mishler, Jeffrey & Cho, Sung Chan & Adroher, Xavier Cordobes, 2011. "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research," Applied Energy, Elsevier, vol. 88(4), pages 981-1007, April.
    2. Nearchos Stylianidis & Ulugbek Azimov & Martin Birkett, 2019. "Investigation of the Effect of Hydrogen and Methane on Combustion of Multicomponent Syngas Mixtures using a Constructed Reduced Chemical Kinetics Mechanism," Energies, MDPI, vol. 12(12), pages 1-23, June.
    3. Obara, Shin’ya, 2015. "Dynamic-characteristics analysis of an independent microgrid consisting of a SOFC triple combined cycle power generation system and large-scale photovoltaics," Applied Energy, Elsevier, vol. 141(C), pages 19-31.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    2. Vasallo, Manuel Jesús & Bravo, José Manuel & Andújar, José Manuel, 2013. "Optimal sizing for UPS systems based on batteries and/or fuel cell," Applied Energy, Elsevier, vol. 105(C), pages 170-181.
    3. Polverino, Pierpaolo & Sorrentino, Marco & Pianese, Cesare, 2017. "A model-based diagnostic technique to enhance faults isolability in Solid Oxide Fuel Cell systems," Applied Energy, Elsevier, vol. 204(C), pages 1198-1214.
    4. Lei Chen & Xiude Tu & Hongkun Chen & Jun Yang & Yayi Wu & Xin Shu & Li Ren, 2016. "Technical Evaluation of Superconducting Fault Current Limiters Used in a Micro-Grid by Considering the Fault Characteristics of Distributed Generation, Energy Storage and Power Loads," Energies, MDPI, vol. 9(10), pages 1-21, September.
    5. Yuan, Wei & Tang, Yong & Yang, Xiaojun & Wan, Zhenping, 2012. "Porous metal materials for polymer electrolyte membrane fuel cells – A review," Applied Energy, Elsevier, vol. 94(C), pages 309-329.
    6. Luka Mihanović & Željko Penga & Lei Xing & Viktor Hacker, 2021. "Combining Baffles and Secondary Porous Layers for Performance Enhancement of Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 14(12), pages 1-28, June.
    7. Lin, Jui-Yen & Shih, Yu-Jen & Chen, Po-Yen & Huang, Yao-Hui, 2016. "Precipitation recovery of boron from aqueous solution by chemical oxo-precipitation at room temperature," Applied Energy, Elsevier, vol. 164(C), pages 1052-1058.
    8. Wang, Yujie & Sun, Zhendong & Chen, Zonghai, 2019. "Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine," Applied Energy, Elsevier, vol. 254(C).
    9. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    10. Bao, Zhiming & Niu, Zhiqiang & Jiao, Kui, 2020. "Gas distribution and droplet removal of metal foam flow field for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 280(C).
    11. Xing, Lei & Du, Shangfeng & Chen, Rui & Mamlouk, Mohamed & Scott, Keith, 2016. "Anode partial flooding modelling of proton exchange membrane fuel cells: Model development and validation," Energy, Elsevier, vol. 96(C), pages 80-95.
    12. Jiao, Kui & Bachman, John & Zhou, Yibo & Park, Jae Wan, 2014. "Effect of induced cross flow on flow pattern and performance of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 115(C), pages 75-82.
    13. Saeidfar, Asal & Yesilyurt, Serhat, 2023. "Numerical investigation of the effects of catalyst layer composition and channel to rib width ratios for low platinum loaded PEMFCs," Applied Energy, Elsevier, vol. 339(C).
    14. Fan Li & Dong Liu & Ke Sun & Songheng Yang & Fangzheng Peng & Kexin Zhang & Guodong Guo & Yuan Si, 2024. "Towards a Future Hydrogen Supply Chain: A Review of Technologies and Challenges," Sustainability, MDPI, vol. 16(5), pages 1-36, February.
    15. Farhad Beik & Leon Williams & Tim Brown & Stuart T. Wagland, 2021. "Managing Non-Sewered Human Waste Using Thermochemical Waste Treatment Technologies: A Review," Energies, MDPI, vol. 14(22), pages 1-22, November.
    16. Xu, Liangfei & Ouyang, Minggao & Li, Jianqiu & Yang, Fuyuan & Lu, Languang & Hua, Jianfeng, 2013. "Optimal sizing of plug-in fuel cell electric vehicles using models of vehicle performance and system cost," Applied Energy, Elsevier, vol. 103(C), pages 477-487.
    17. Chu, Tiankuo & Tang, Qianwen & Wang, Qinpu & Wang, Yanbo & Du, Hong & Guo, YuQing & Li, Bing & Yang, Daijun & Ming, Pingwen & Zhang, Cunman, 2023. "Experimental study on the effect of flow channel parameters on the durability of PEMFC stack and analysis of hydrogen crossover mechanism," Energy, Elsevier, vol. 264(C).
    18. Mo, Jingke & Kang, Zhenye & Yang, Gaoqiang & Retterer, Scott T. & Cullen, David A. & Toops, Todd J. & Green, Johney B. & Zhang, Feng-Yuan, 2016. "Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting," Applied Energy, Elsevier, vol. 177(C), pages 817-822.
    19. Obara, Shin'ya & Morel Rios, Jorge Ricardo & Okada, Masaki, 2015. "Control of cyclic fluctuations in solid oxide fuel cell cogeneration accompanied by photovoltaics," Energy, Elsevier, vol. 91(C), pages 994-1008.
    20. Yang, Daijun & Lan, Yilin & Chu, Tiankuo & Li, Bing & Ming, Pingwen & Zhang, Cunman & Zhou, Xiangyang, 2022. "Rapid activation of a full-length proton exchange membrane fuel cell stack with a novel intermittent oxygen starvation method," Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5186-:d:423956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.