IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i19p5099-d422169.html
   My bibliography  Save this article

Outdoor PV System Monitoring—Input Data Quality, Data Imputation and Filtering Approaches

Author

Listed:
  • Sascha Lindig

    (Institute for Renewable Energy, EURAC Research, Viale Druso 1, 39100 Bolzano, Italy
    Faculty of Engineering, University of Ljubljana, Trzaska Cesta 25, 1000 Ljubljana, Slovenia)

  • Atse Louwen

    (Institute for Renewable Energy, EURAC Research, Viale Druso 1, 39100 Bolzano, Italy)

  • David Moser

    (Institute for Renewable Energy, EURAC Research, Viale Druso 1, 39100 Bolzano, Italy)

  • Marko Topic

    (Faculty of Engineering, University of Ljubljana, Trzaska Cesta 25, 1000 Ljubljana, Slovenia)

Abstract

Photovoltaic monitoring data are the primary source for studying photovoltaic plant behavior. In particular, performance loss and remaining-useful-lifetime calculations rely on trustful input data. Furthermore, a regular stream of high quality is the basis for pro-active operation and management activities which ensure a smooth operation of PV plants. The raw data under investigation are electrical measurements and usually meteorological data such as in-plane irradiance and temperature. Usually, performance analyses follow a strict pattern of checking input data quality followed by the application of appropriate filter, choosing a key performance indicator and the application of certain methodologies to receive a final result. In this context, this paper focuses on four main objectives. We present common photovoltaics monitoring data quality issues, provide visual guidelines on how to detect and evaluate these, provide new data imputation approaches, and discuss common filtering approaches. Data imputation techniques for module temperature and irradiance data are discussed and compared to classical approaches. This work is intended to be a soft introduction into PV monitoring data analysis discussing best practices and issues an analyst might face. It was seen that if a sufficient amount of training data is available, multivariate adaptive regression splines yields good results for module temperature imputation while histogram-based gradient boosting regression outperforms classical approaches for in-plane irradiance transposition. Based on tested filtering procedures, it is believed that standards should be developed including relatively low irradiance thresholds together with strict power-irradiance pair filters.

Suggested Citation

  • Sascha Lindig & Atse Louwen & David Moser & Marko Topic, 2020. "Outdoor PV System Monitoring—Input Data Quality, Data Imputation and Filtering Approaches," Energies, MDPI, vol. 13(19), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5099-:d:422169
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/19/5099/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/19/5099/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yagli, Gokhan Mert & Yang, Dazhi & Gandhi, Oktoviano & Srinivasan, Dipti, 2020. "Can we justify producing univariate machine-learning forecasts with satellite-derived solar irradiance?," Applied Energy, Elsevier, vol. 259(C).
    2. Editorial Article, 0. "The Information for Authors," Economics of Contemporary Russia, Regional Public Organization for Assistance to the Development of Institutions of the Department of Economics of the Russian Academy of Sciences, issue 4.
    3. Demirhan, Haydar & Renwick, Zoe, 2018. "Missing value imputation for short to mid-term horizontal solar irradiance data," Applied Energy, Elsevier, vol. 225(C), pages 998-1012.
    4. Julián Ascencio-Vásquez & Jakob Bevc & Kristjan Reba & Kristijan Brecl & Marko Jankovec & Marko Topič, 2020. "Advanced PV Performance Modelling Based on Different Levels of Irradiance Data Accuracy," Energies, MDPI, vol. 13(9), pages 1-12, May.
    5. Carlos Toledo & Ana Maria Gracia Amillo & Giorgio Bardizza & Jose Abad & Antonio Urbina, 2020. "Evaluation of Solar Radiation Transposition Models for Passive Energy Management and Building Integrated Photovoltaics," Energies, MDPI, vol. 13(3), pages 1-24, February.
    6. Editorial Article, 0. "The Information for Authors," Economics of Contemporary Russia, Regional Public Organization for Assistance to the Development of Institutions of the Department of Economics of the Russian Academy of Sciences, issue 3.
    7. Editorial Article, 0. "The Information for Authors," Economics of Contemporary Russia, Regional Public Organization for Assistance to the Development of Institutions of the Department of Economics of the Russian Academy of Sciences, issue 2.
    8. Editorial Article, 0. "The Information for Authors," Economics of Contemporary Russia, Regional Public Organization for Assistance to the Development of Institutions of the Department of Economics of the Russian Academy of Sciences, issue 2.
    9. Reno, Matthew J. & Hansen, Clifford W., 2016. "Identification of periods of clear sky irradiance in time series of GHI measurements," Renewable Energy, Elsevier, vol. 90(C), pages 520-531.
    10. Mattei, M. & Notton, G. & Cristofari, C. & Muselli, M. & Poggi, P., 2006. "Calculation of the polycrystalline PV module temperature using a simple method of energy balance," Renewable Energy, Elsevier, vol. 31(4), pages 553-567.
    11. Editorial Article, 0. "The Information for Authors," Economics of Contemporary Russia, Regional Public Organization for Assistance to the Development of Institutions of the Department of Economics of the Russian Academy of Sciences, issue 4.
    12. Editorial Article, 0. "The Information for Authors," Economics of Contemporary Russia, Regional Public Organization for Assistance to the Development of Institutions of the Department of Economics of the Russian Academy of Sciences, issue 3.
    13. Editorial Article, 0. "The Information for Authors," Economics of Contemporary Russia, Regional Public Organization for Assistance to the Development of Institutions of the Department of Economics of the Russian Academy of Sciences, issue 1.
    14. Livera, Andreas & Theristis, Marios & Makrides, George & Georghiou, George E., 2019. "Recent advances in failure diagnosis techniques based on performance data analysis for grid-connected photovoltaic systems," Renewable Energy, Elsevier, vol. 133(C), pages 126-143.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Ignacio Herraiz & Rita Hogan Almeida & Manuel Castillo-Cagigal & Luis Narvarte, 2023. "Experimental Performance Evaluation of a PV-Powered Center-Pivot Irrigation System for a Three-Year Operation Period," Energies, MDPI, vol. 16(9), pages 1-19, April.
    2. Gabriel Nicolae Popa & Angela Iagăr & Corina Maria Diniș, 2020. "Considerations on Current and Voltage Unbalance of Nonlinear Loads in Residential and Educational Sectors," Energies, MDPI, vol. 14(1), pages 1-29, December.
    3. Fangfang Li & Hui Sun & Yu Gu & Ge Yu, 2022. "A Noise-Aware Multiple Imputation Algorithm for Missing Data," Mathematics, MDPI, vol. 11(1), pages 1-16, December.
    4. Fuster-Palop, Enrique & Vargas-Salgado, Carlos & Ferri-Revert, Juan Carlos & Payá, Jorge, 2022. "Performance analysis and modelling of a 50 MW grid-connected photovoltaic plant in Spain after 12 years of operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    5. Romero-Fiances, Irene & Livera, Andreas & Theristis, Marios & Makrides, George & Stein, Joshua S. & Nofuentes, Gustavo & de la Casa, Juan & Georghiou, George E., 2022. "Impact of duration and missing data on the long-term photovoltaic degradation rate estimation," Renewable Energy, Elsevier, vol. 181(C), pages 738-748.
    6. Gianfranco Di Lorenzo & Erika Stracqualursi & Leonardo Micheli & Salvatore Celozzi & Rodolfo Araneo, 2022. "Prognostic Methods for Photovoltaic Systems’ Underperformance and Degradation: Status, Perspectives, and Challenges," Energies, MDPI, vol. 15(17), pages 1-6, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kritana Prueksakorn & Cheng-Xu Piao & Hyunchul Ha & Taehyeung Kim, 2015. "Computational and Experimental Investigation for an Optimal Design of Industrial Windows to Allow Natural Ventilation during Wind-Driven Rain," Sustainability, MDPI, vol. 7(8), pages 1-22, August.
    2. Hualin Xie & Jinlang Zou & Hailing Jiang & Ning Zhang & Yongrok Choi, 2014. "Spatiotemporal Pattern and Driving Forces of Arable Land-Use Intensity in China: Toward Sustainable Land Management Using Emergy Analysis," Sustainability, MDPI, vol. 6(6), pages 1-17, May.
    3. Stephan E. Maurer & Andrei V. Potlogea, 2021. "Male‐biased Demand Shocks and Women's Labour Force Participation: Evidence from Large Oil Field Discoveries," Economica, London School of Economics and Political Science, vol. 88(349), pages 167-188, January.
    4. Tie Hua Zhou & Ling Wang & Keun Ho Ryu, 2015. "Supporting Keyword Search for Image Retrieval with Integration of Probabilistic Annotation," Sustainability, MDPI, vol. 7(5), pages 1-18, May.
    5. T. Karski, 2019. "Opinions and Controversies in Problem of The So-Called Idiopathic Scoliosis. Information About Etiology, New Classification and New Therapy," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 12(5), pages 9612-9616, January.
    6. Wesley Mendes-da-Silva, 2020. "What Makes an Article be More Cited?," RAC - Revista de Administração Contemporânea (Journal of Contemporary Administration), ANPAD - Associação Nacional de Pós-Graduação e Pesquisa em Administração, vol. 24(6), pages 507-513.
    7. Wisdom Akpalu & Mintewab Bezabih, 2015. "Tenure Insecurity, Climate Variability and Renting out Decisions among Female Small-Holder Farmers in Ethiopia," Sustainability, MDPI, vol. 7(6), pages 1-16, June.
    8. Wei Chen & Shu-Yu Liu & Chih-Han Chen & Yi-Shan Lee, 2011. "Bounded Memory, Inertia, Sampling and Weighting Model for Market Entry Games," Games, MDPI, vol. 2(1), pages 1-13, March.
    9. David Harborth & Sebastian Pape, 2020. "Empirically Investigating Extraneous Influences on the “APCO” Model—Childhood Brand Nostalgia and the Positivity Bias," Future Internet, MDPI, vol. 12(12), pages 1-16, December.
    10. Taeyeoun Roh & Yujin Jeong & Byungun Yoon, 2017. "Developing a Methodology of Structuring and Layering Technological Information in Patent Documents through Natural Language Processing," Sustainability, MDPI, vol. 9(11), pages 1-19, November.
    11. He-Yau Kang & Amy H. I. Lee & Tzu-Ting Huang, 2016. "Project Management for a Wind Turbine Construction by Applying Fuzzy Multiple Objective Linear Programming Models," Energies, MDPI, vol. 9(12), pages 1-15, December.
    12. A. B. Atkinson & Stephen P. Jenkins, 2020. "A Different Perspective on the Evolution of UK Income Inequality," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 66(2), pages 253-266, June.
    13. Haiyan Xu & Yanhui Ding & Jing Sun & Kun Zhao & Yuanjian Chen, 2019. "Dynamic Group Recommendation Based on the Attention Mechanism," Future Internet, MDPI, vol. 11(9), pages 1-15, September.
    14. Adina Letiţia Negruşa & Valentin Toader & Aurelian Sofică & Mihaela Filofteia Tutunea & Rozalia Veronica Rus, 2015. "Exploring Gamification Techniques and Applications for Sustainable Tourism," Sustainability, MDPI, vol. 7(8), pages 1-30, August.
    15. Ahmad N. Alkenani & Mohammad Ashraf & Ghulam Mohammad, 2020. "Quantum Codes from Constacyclic Codes over the Ring F q [ u 1 , u 2 ]/〈 u 1 2 - u 1 , u 2 2 - u 2 , u 1 u 2 - u 2 u 1 〉," Mathematics, MDPI, vol. 8(5), pages 1-11, May.
    16. Shang-Yuan Chen & Jui-Ting Huang, 2012. "A Smart Green Building: An Environmental Health Control Design," Energies, MDPI, vol. 5(5), pages 1-16, May.
    17. Yanhong Feng & Xu Yu & Gai-Ge Wang, 2019. "A Novel Monarch Butterfly Optimization with Global Position Updating Operator for Large-Scale 0-1 Knapsack Problems," Mathematics, MDPI, vol. 7(11), pages 1-31, November.
    18. Xiaoshu Cao & Feiwen Liang & Huiling Chen & Yongwei Liu, 2017. "Circuity Characteristics of Urban Travel Based on GPS Data: A Case Study of Guangzhou," Sustainability, MDPI, vol. 9(11), pages 1-21, November.
    19. S. B. Reshetnikov & M. R. Skirdov, 2017. "Analysis of methodological approaches to determination and assessment of the human capital," Russian Journal of Industrial Economics, MISIS, vol. 10(1).
    20. Mi Jung Son & Jin Han Park & Ka Hyun Ko, 2019. "Some Hesitant Fuzzy Hamacher Power-Aggregation Operators for Multiple-Attribute Decision-Making," Mathematics, MDPI, vol. 7(7), pages 1-33, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5099-:d:422169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.