IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4900-d415803.html
   My bibliography  Save this article

Ultra-Short-Term Load Demand Forecast Model Framework Based on Deep Learning

Author

Listed:
  • Hongze Li

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Hongyu Liu

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Hongyan Ji

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Shiying Zhang

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Pengfei Li

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

Abstract

Ultra-short-term load demand forecasting is significant to the rapid response and real-time dispatching of the power demand side. Considering too many random factors that affect the load, this paper combines convolution, long short-term memory (LSTM), and gated recurrent unit (GRU) algorithms to propose an ultra-short-term load forecasting model based on deep learning. Firstly, more than 100,000 pieces of historical load and meteorological data from Beijing in the three years from 2016 to 2018 were collected, and the meteorological data were divided into 18 types considering the actual meteorological characteristics of Beijing. Secondly, after the standardized processing of the time-series samples, the convolution filter was used to extract the features of the high-order samples to reduce the number of training parameters. On this basis, the LSTM layer and GRU layer were used for modeling based on time series. A dropout layer was introduced after each layer to reduce the risk of overfitting. Finally, load prediction results were output as a dense layer. In the model training process, the mean square error (MSE) was used as the objective optimization function to train the deep learning model and find the optimal super parameter. In addition, based on the average training time, training error, and prediction error, this paper verifies the effectiveness and practicability of the load prediction model proposed under the deep learning structure in this paper by comparing it with four other models including GRU, LSTM, Conv-GRU, and Conv-LSTM.

Suggested Citation

  • Hongze Li & Hongyu Liu & Hongyan Ji & Shiying Zhang & Pengfei Li, 2020. "Ultra-Short-Term Load Demand Forecast Model Framework Based on Deep Learning," Energies, MDPI, vol. 13(18), pages 1-16, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4900-:d:415803
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4900/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4900/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Wang, H.Z. & Wang, G.B. & Li, G.Q. & Peng, J.C. & Liu, Y.T., 2016. "Deep belief network based deterministic and probabilistic wind speed forecasting approach," Applied Energy, Elsevier, vol. 182(C), pages 80-93.
    3. Bingchun Liu & Chuanchuan Fu & Arlene Bielefield & Yan Quan Liu, 2017. "Forecasting of Chinese Primary Energy Consumption in 2021 with GRU Artificial Neural Network," Energies, MDPI, vol. 10(10), pages 1-15, September.
    4. Qing, Xiangyun & Niu, Yugang, 2018. "Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM," Energy, Elsevier, vol. 148(C), pages 461-468.
    5. Seunghyoung Ryu & Jaekoo Noh & Hongseok Kim, 2016. "Deep Neural Network Based Demand Side Short Term Load Forecasting," Energies, MDPI, vol. 10(1), pages 1-20, December.
    6. Dedinec, Aleksandra & Filiposka, Sonja & Dedinec, Aleksandar & Kocarev, Ljupco, 2016. "Deep belief network based electricity load forecasting: An analysis of Macedonian case," Energy, Elsevier, vol. 115(P3), pages 1688-1700.
    7. Wang, Shouxiang & Zhang, Na & Wu, Lei & Wang, Yamin, 2016. "Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method," Renewable Energy, Elsevier, vol. 94(C), pages 629-636.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernando Dorado Rueda & Jaime Durán Suárez & Alejandro del Real Torres, 2021. "Short-Term Load Forecasting Using Encoder-Decoder WaveNet: Application to the French Grid," Energies, MDPI, vol. 14(9), pages 1-16, April.
    2. Xue-Bo Jin & Wei-Zhen Zheng & Jian-Lei Kong & Xiao-Yi Wang & Yu-Ting Bai & Ting-Li Su & Seng Lin, 2021. "Deep-Learning Forecasting Method for Electric Power Load via Attention-Based Encoder-Decoder with Bayesian Optimization," Energies, MDPI, vol. 14(6), pages 1-18, March.
    3. Yu Jin & Honggang Guo & Jianzhou Wang & Aiyi Song, 2020. "A Hybrid System Based on LSTM for Short-Term Power Load Forecasting," Energies, MDPI, vol. 13(23), pages 1-32, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghimire, Sujan & Deo, Ravinesh C. & Raj, Nawin & Mi, Jianchun, 2019. "Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Sharifzadeh, Mahdi & Sikinioti-Lock, Alexandra & Shah, Nilay, 2019. "Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 513-538.
    3. Yuebing Xu & Jing Zhang & Zuqiang Long & Yan Chen, 2018. "A Novel Dual-Scale Deep Belief Network Method for Daily Urban Water Demand Forecasting," Energies, MDPI, vol. 11(5), pages 1-15, April.
    4. Li, Pengtao & Zhou, Kaile & Lu, Xinhui & Yang, Shanlin, 2020. "A hybrid deep learning model for short-term PV power forecasting," Applied Energy, Elsevier, vol. 259(C).
    5. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    6. Mojtaba Qolipour & Ali Mostafaeipour & Mohammad Saidi-Mehrabad & Hamid R Arabnia, 2019. "Prediction of wind speed using a new Grey-extreme learning machine hybrid algorithm: A case study," Energy & Environment, , vol. 30(1), pages 44-62, February.
    7. Khan, Waqas & Walker, Shalika & Zeiler, Wim, 2022. "Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach," Energy, Elsevier, vol. 240(C).
    8. Ke Yan & Xudong Wang & Yang Du & Ning Jin & Haichao Huang & Hangxia Zhou, 2018. "Multi-Step Short-Term Power Consumption Forecasting with a Hybrid Deep Learning Strategy," Energies, MDPI, vol. 11(11), pages 1-15, November.
    9. Zonggui Yao & Chen Wang, 2018. "A Hybrid Model Based on A Modified Optimization Algorithm and An Artificial Intelligence Algorithm for Short-Term Wind Speed Multi-Step Ahead Forecasting," Sustainability, MDPI, vol. 10(5), pages 1-33, May.
    10. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    11. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    12. Xiao, Zenan & Huang, Xiaoqiao & Liu, Jun & Li, Chengli & Tai, Yonghang, 2023. "A novel method based on time series ensemble model for hourly photovoltaic power prediction," Energy, Elsevier, vol. 276(C).
    13. Da Liu & Kun Sun & Han Huang & Pingzhou Tang, 2018. "Monthly Load Forecasting Based on Economic Data by Decomposition Integration Theory," Sustainability, MDPI, vol. 10(9), pages 1-22, September.
    14. Wang, Xiaoyang & Sun, Yunlin & Luo, Duo & Peng, Jinqing, 2022. "Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification," Energy, Elsevier, vol. 240(C).
    15. Anh Ngoc-Lan Huynh & Ravinesh C. Deo & Duc-Anh An-Vo & Mumtaz Ali & Nawin Raj & Shahab Abdulla, 2020. "Near Real-Time Global Solar Radiation Forecasting at Multiple Time-Step Horizons Using the Long Short-Term Memory Network," Energies, MDPI, vol. 13(14), pages 1-30, July.
    16. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "Photovoltaic power forecasting based LSTM-Convolutional Network," Energy, Elsevier, vol. 189(C).
    17. Hadjout, D. & Torres, J.F. & Troncoso, A. & Sebaa, A. & Martínez-Álvarez, F., 2022. "Electricity consumption forecasting based on ensemble deep learning with application to the Algerian market," Energy, Elsevier, vol. 243(C).
    18. Yusen Wang & Wenlong Liao & Yuqing Chang, 2018. "Gated Recurrent Unit Network-Based Short-Term Photovoltaic Forecasting," Energies, MDPI, vol. 11(8), pages 1-14, August.
    19. Wang, Jianzhou & Dong, Yunxuan & Zhang, Kequan & Guo, Zhenhai, 2017. "A numerical model based on prior distribution fuzzy inference and neural networks," Renewable Energy, Elsevier, vol. 112(C), pages 486-497.
    20. Hu, Jianming & Heng, Jiani & Wen, Jiemei & Zhao, Weigang, 2020. "Deterministic and probabilistic wind speed forecasting with de-noising-reconstruction strategy and quantile regression based algorithm," Renewable Energy, Elsevier, vol. 162(C), pages 1208-1226.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4900-:d:415803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.