IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4564-d408264.html
   My bibliography  Save this article

Power-Optimized Sinusoidal Piston Motion and Its Performance Gain for an Alpha-Type Stirling Engine with Limited Regeneration

Author

Listed:
  • Mathias Scheunert

    (Institut für Physik, Technische Universität Chemnitz, 09107 Chemnitz, Germany)

  • Robin Masser

    (Institut für Physik, Technische Universität Chemnitz, 09107 Chemnitz, Germany)

  • Abdellah Khodja

    (Institut für Physik, Technische Universität Chemnitz, 09107 Chemnitz, Germany)

  • Raphael Paul

    (Institut für Physik, Technische Universität Chemnitz, 09107 Chemnitz, Germany)

  • Karsten Schwalbe

    (Institut für Physik, Technische Universität Chemnitz, 09107 Chemnitz, Germany)

  • Andreas Fischer

    (Institut für Physik, Technische Universität Chemnitz, 09107 Chemnitz, Germany)

  • Karl Heinz Hoffmann

    (Institut für Physik, Technische Universität Chemnitz, 09107 Chemnitz, Germany)

Abstract

The recuperation of otherwise lost waste heat provides a formidable way to decrease the primary energy consumption of many technical systems. A possible route to achieve that goal is through the use of Stirling engines, which have shown to be reliable and efficient devices. One can increase their performance by optimizing the piston motion. Here, it is investigated to which extent the cycle averaged power output can be increased by using a special class of adjustable sinusoidal motions (the AS class). In particular the influence of the regeneration effectiveness on the piston motion is examined. It turns out that with the optimized piston motion one can achieve performance gains for the power output of up to 50% depending on the loss mechanisms involved. A remarkable result is that the power output does not depend strongly on the limitations of the regenerator, in fact—depending on the loss terms—the influence of the regenerator practically vanishes.

Suggested Citation

  • Mathias Scheunert & Robin Masser & Abdellah Khodja & Raphael Paul & Karsten Schwalbe & Andreas Fischer & Karl Heinz Hoffmann, 2020. "Power-Optimized Sinusoidal Piston Motion and Its Performance Gain for an Alpha-Type Stirling Engine with Limited Regeneration," Energies, MDPI, vol. 13(17), pages 1-19, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4564-:d:408264
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4564/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4564/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Timoumi, Youssef & Tlili, Iskander & Ben Nasrallah, Sassi, 2008. "Design and performance optimization of GPU-3 Stirling engines," Energy, Elsevier, vol. 33(7), pages 1100-1114.
    2. Hooshang, M. & Askari Moghadam, R. & Alizadeh Nia, S. & Masouleh, M. Tale, 2015. "Optimization of Stirling engine design parameters using neural networks," Renewable Energy, Elsevier, vol. 74(C), pages 855-866.
    3. Timoumi, Youssef & Tlili, Iskander & Ben Nasrallah, Sassi, 2008. "Performance optimization of Stirling engines," Renewable Energy, Elsevier, vol. 33(9), pages 2134-2144.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Haoran & Chen, Lingen & Ge, Yanlin & Feng, Huijun, 2022. "Multi-objective optimization of Stirling heat engine with various heat and mechanical losses," Energy, Elsevier, vol. 256(C).
    2. Abdellah Khodja & Raphael Paul & Andreas Fischer & Karl Heinz Hoffmann, 2021. "Optimized Cooling Power of a Vuilleumier Refrigerator with Limited Regeneration," Energies, MDPI, vol. 14(24), pages 1-21, December.
    3. Shuangshuang Shi & Yanlin Ge & Lingen Chen & Huijun Feng, 2021. "Performance Optimizations with Single-, Bi-, Tri-, and Quadru-Objective for Irreversible Atkinson Cycle with Nonlinear Variation of Working Fluid’s Specific Heat," Energies, MDPI, vol. 14(14), pages 1-23, July.
    4. Chen, Lingen & Xia, Shaojun, 2023. "Maximum work configuration for irreversible finite-heat-capacity source engines by applying averaged-optimal-control theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    5. Pengchao Zang & Lingen Chen & Yanlin Ge, 2022. "Maximizing Efficient Power for an Irreversible Porous Medium Cycle with Nonlinear Variation of Working Fluid’s Specific Heat," Energies, MDPI, vol. 15(19), pages 1-12, September.
    6. Yajuan Wang & Jun’an Zhang & Zhiwei Lu & Jiayu Liu & Bo Liu & Hao Dong, 2022. "Analytical Solution of Heat Transfer Performance of Grid Regenerator in Inverse Stirling Cycle," Energies, MDPI, vol. 15(19), pages 1-25, September.
    7. Raphael Paul & Karl Heinz Hoffmann, 2021. "A Class of Reduced-Order Regenerator Models," Energies, MDPI, vol. 14(21), pages 1-25, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mojtaba Alborzi & Faramarz Sarhaddi & Fatemeh Sobhnamayan, 2019. "Optimization of the thermal lag Stirling engine performance," Energy & Environment, , vol. 30(1), pages 156-175, February.
    2. Li, Ruijie & Grosu, Lavinia & Li, Wei, 2017. "New polytropic model to predict the performance of beta and gamma type Stirling engine," Energy, Elsevier, vol. 128(C), pages 62-76.
    3. Schneider, T. & Müller, D. & Karl, J., 2020. "A review of thermochemical biomass conversion combined with Stirling engines for the small-scale cogeneration of heat and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Wang, Kai & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "A transient one-dimensional numerical model for kinetic Stirling engine," Applied Energy, Elsevier, vol. 183(C), pages 775-790.
    5. Ahmadi, Mohammad H. & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah, 2017. "Thermal models for analysis of performance of Stirling engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 168-184.
    6. Marion, Michaël & Louahlia, Hasna & Gualous, Hamid, 2016. "Performances of a CHP Stirling system fuelled with glycerol," Renewable Energy, Elsevier, vol. 86(C), pages 182-191.
    7. Babaelahi, Mojtaba & Sayyaadi, Hoseyn, 2014. "Simple-II: A new numerical thermal model for predicting thermal performance of Stirling engines," Energy, Elsevier, vol. 69(C), pages 873-890.
    8. Luo, Zhongyang & Sultan, Umair & Ni, Mingjiang & Peng, Hao & Shi, Bingwei & Xiao, Gang, 2016. "Multi-objective optimization for GPU3 Stirling engine by combining multi-objective algorithms," Renewable Energy, Elsevier, vol. 94(C), pages 114-125.
    9. Cheng, Chin-Hsiang & Yang, Hang-Suin & Keong, Lam, 2013. "Theoretical and experimental study of a 300-W beta-type Stirling engine," Energy, Elsevier, vol. 59(C), pages 590-599.
    10. Ahmed, Fawad & Zhu, Shunmin & Yu, Guoyao & Luo, Ercang, 2022. "A potent numerical model coupled with multi-objective NSGA-II algorithm for the optimal design of Stirling engine," Energy, Elsevier, vol. 247(C).
    11. Mabrouk, M.T. & Kheiri, A. & Feidt, M., 2015. "Effect of leakage losses on the performance of a β type Stirling engine," Energy, Elsevier, vol. 88(C), pages 111-117.
    12. Karabulut, Halit & Okur, Melih & Halis, Serdar & Altin, Murat, 2019. "Thermodynamic, dynamic and flow friction analysis of a Stirling engine with Scotch yoke piston driving mechanism," Energy, Elsevier, vol. 168(C), pages 169-181.
    13. Cheng, Chin-Hsiang & Yang, Hang-Suin, 2011. "Analytical model for predicting the effect of operating speed on shaft power output of Stirling engines," Energy, Elsevier, vol. 36(10), pages 5899-5908.
    14. Zare, Sh. & Tavakolpour-Saleh, A.R., 2016. "Frequency-based design of a free piston Stirling engine using genetic algorithm," Energy, Elsevier, vol. 109(C), pages 466-480.
    15. Formosa, Fabien & Fréchette, Luc G., 2013. "Scaling laws for free piston Stirling engine design: Benefits and challenges of miniaturization," Energy, Elsevier, vol. 57(C), pages 796-808.
    16. Ferreira, Ana C. & Nunes, Manuel L. & Teixeira, José C.F. & Martins, Luís A.S.B. & Teixeira, Senhorinha F.C.F., 2016. "Thermodynamic and economic optimization of a solar-powered Stirling engine for micro-cogeneration purposes," Energy, Elsevier, vol. 111(C), pages 1-17.
    17. Campos, M.C. & Vargas, J.V.C. & Ordonez, J.C., 2012. "Thermodynamic optimization of a Stirling engine," Energy, Elsevier, vol. 44(1), pages 902-910.
    18. Carlos Ulloa & José Luis Míguez & Jacobo Porteiro & Pablo Eguía & Antón Cacabelos, 2013. "Development of a Transient Model of a Stirling-Based CHP System," Energies, MDPI, vol. 6(7), pages 1-19, June.
    19. Ferreira, Ana Cristina & Silva, João & Teixeira, Senhorinha & Teixeira, José Carlos & Nebra, Silvia Azucena, 2020. "Assessment of the Stirling engine performance comparing two renewable energy sources: Solar energy and biomass," Renewable Energy, Elsevier, vol. 154(C), pages 581-597.
    20. Cheng, Chin-Hsiang & Yang, Hang-Suin, 2013. "Theoretical model for predicting thermodynamic behavior of thermal-lag Stirling engine," Energy, Elsevier, vol. 49(C), pages 218-228.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4564-:d:408264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.