IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4317-d401564.html
   My bibliography  Save this article

Design and Implementation of High Order Sliding Mode Control for PEMFC Power System

Author

Listed:
  • Mohammed Yousri Silaa

    (Laboratory of Semiconductors and Functional Materials, Amar Telidji University of Laghouat, BP 37G, Laghouat 03000, Algeria
    Engineering School of Vitoria, University of the Basque Country UPV/EHU, Nieves Cano 12, 1006 Vitoria, Spain)

  • Mohamed Derbeli

    (Engineering School of Vitoria, University of the Basque Country UPV/EHU, Nieves Cano 12, 1006 Vitoria, Spain)

  • Oscar Barambones

    (Engineering School of Vitoria, University of the Basque Country UPV/EHU, Nieves Cano 12, 1006 Vitoria, Spain)

  • Ali Cheknane

    (Laboratory of Semiconductors and Functional Materials, Amar Telidji University of Laghouat, BP 37G, Laghouat 03000, Algeria)

Abstract

Fuel cells are considered as one of the most promising methods to produce electrical energy due to its high-efficiency level that reaches up to 50%, as well as high reliability with no polluting effects. However, scientists and researchers are interested more in proton exchange membrane fuel cells (PEMFCs). Thus, it has been considered as an ideal solution to many engineering applications. The main aim of this work is to keep the PEMFC operating at an adequate power point. To this end, conventional first-order sliding mode control (SMC) is used. However, the chattering phenomenon, which is caused by the SMC leads to a low control accuracy and heat loss in the energy circuits. In order to overcome these drawbacks, quasi-continuous high order sliding mode control (QC-HOSM) is proposed so as to improve the power quality and performance. The control stability is proven via the Lyapunov theory. The closed-loop system consists of a PEM fuel cell, a step-up converter, a DSPACE DS1104, SMC and QC-HOSM algorithms and a variable load resistance. In order to demonstrate the effectiveness of the proposed control scheme, experimental results are compared with the conventional SMC. The obtained results show that a chattering reduction of 84% could be achieved using the proposed method.

Suggested Citation

  • Mohammed Yousri Silaa & Mohamed Derbeli & Oscar Barambones & Ali Cheknane, 2020. "Design and Implementation of High Order Sliding Mode Control for PEMFC Power System," Energies, MDPI, vol. 13(17), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4317-:d:401564
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4317/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4317/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ramadoni Syahputra & Indah Soesanti, 2019. "Performance Improvement for Small-Scale Wind Turbine System Based on Maximum Power Point Tracking Control," Energies, MDPI, vol. 12(20), pages 1-18, October.
    2. Miaomiao Ma & Xiangjie Liu & Kwang Y. Lee, 2020. "Maximum Power Point Tracking and Voltage Regulation of Two-Stage Grid-Tied PV System Based on Model Predictive Control," Energies, MDPI, vol. 13(6), pages 1-16, March.
    3. Mahajan Sagar Bhaskar & Sanjeevikumar Padmanaban & Jens Bo Holm-Nielsen, 2019. "Double Stage Double Output DC–DC Converters for High Voltage Loads in Fuel Cell Vehicles," Energies, MDPI, vol. 12(19), pages 1-19, September.
    4. Doudou N. Luta & Atanda K. Raji, 2019. "Fuzzy Rule-Based and Particle Swarm Optimisation MPPT Techniques for a Fuel Cell Stack," Energies, MDPI, vol. 12(5), pages 1-15, March.
    5. Mohamed Derbeli & Oscar Barambones & Jose Antonio Ramos-Hernanz & Lassaad Sbita, 2019. "Real-Time Implementation of a Super Twisting Algorithm for PEM Fuel Cell Power System," Energies, MDPI, vol. 12(9), pages 1-20, April.
    6. Baosheng Bai & Yi-Tung Chen, 2018. "Simulation of the Oxygen Reduction Reaction (ORR) Inside the Cathode Catalyst Layer (CCL) of Proton Exchange Membrane Fuel Cells Using the Kinetic Monte Carlo Method," Energies, MDPI, vol. 11(10), pages 1-18, September.
    7. Chen Li & Ashanti M. Sallee & Xiaoyu Zhang & Sandeep Kumar, 2018. "Electrochemical Hydrogenation of Acetone to Produce Isopropanol Using a Polymer Electrolyte Membrane Reactor," Energies, MDPI, vol. 11(10), pages 1-17, October.
    8. Carmen Raga & Andres Barrado & Henry Miniguano & Antonio Lazaro & Isabel Quesada & Alberto Martin-Lozano, 2018. "Analysis and Sizing of Power Distribution Architectures Applied to Fuel Cell Based Vehicles," Energies, MDPI, vol. 11(10), pages 1-30, September.
    9. Saumya Bansal & Yi Zong & Shi You & Lucian Mihet-Popa & Jinsheng Xiao, 2020. "Technical and Economic Analysis of One-Stop Charging Stations for Battery and Fuel Cell EV with Renewable Energy Sources," Energies, MDPI, vol. 13(11), pages 1-15, June.
    10. Jirada Gosumbonggot & Goro Fujita, 2019. "Partial Shading Detection and Global Maximum Power Point Tracking Algorithm for Photovoltaic with the Variation of Irradiation and Temperature," Energies, MDPI, vol. 12(2), pages 1-22, January.
    11. Hooman Farzaneh, 2019. "Design of a Hybrid Renewable Energy System Based on Supercritical Water Gasification of Biomass for Off-Grid Power Supply in Fukushima," Energies, MDPI, vol. 12(14), pages 1-14, July.
    12. Shehab Al-Sakkaf & Mahmoud Kassas & Muhammad Khalid & Mohammad A. Abido, 2019. "An Energy Management System for Residential Autonomous DC Microgrid Using Optimized Fuzzy Logic Controller Considering Economic Dispatch," Energies, MDPI, vol. 12(8), pages 1-25, April.
    13. Sajjad Bahrebar & Frede Blaabjerg & Huai Wang & Navid Vafamand & Mohammad-Hassan Khooban & Sima Rastayesh & Dao Zhou, 2018. "A Novel Type-2 Fuzzy Logic for Improved Risk Analysis of Proton Exchange Membrane Fuel Cells in Marine Power Systems Application," Energies, MDPI, vol. 11(4), pages 1-16, March.
    14. Sofia Boulmrharj & Mohammed Khaidar & Mohamed Bakhouya & Radouane Ouladsine & Mostapha Siniti & Khalid Zine-dine, 2020. "Performance Assessment of a Hybrid System with Hydrogen Storage and Fuel Cell for Cogeneration in Buildings," Sustainability, MDPI, vol. 12(12), pages 1-21, June.
    15. Al-Attar Ali Mohamed & Shimaa Ali & Salem Alkhalaf & Tomonobu Senjyu & Ashraf M. Hemeida, 2019. "Optimal Allocation of Hybrid Renewable Energy System by Multi-Objective Water Cycle Algorithm," Sustainability, MDPI, vol. 11(23), pages 1-20, November.
    16. Wenxu Niu & Ke Song & Qiwen Xiao & Matthias Behrendt & Albert Albers & Tong Zhang, 2018. "Transparency of a Geographically Distributed Test Platform for Fuel Cell Electric Vehicle Powertrain Systems Based on X-in-the-Loop Approach," Energies, MDPI, vol. 11(9), pages 1-23, September.
    17. Yuri B. Shtessel & Malek Ghanes & Roshini S. Ashok, 2020. "Hydrogen Fuel Cell and Ultracapacitor Based Electric Power System Sliding Mode Control: Electric Vehicle Application," Energies, MDPI, vol. 13(11), pages 1-20, June.
    18. Juan C. González Palencia & Van Tuan Nguyen & Mikiya Araki & Seiichi Shiga, 2020. "The Role of Powertrain Electrification in Achieving Deep Decarbonization in Road Freight Transport," Energies, MDPI, vol. 13(10), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammed Yousri Silaa & Oscar Barambones & José Antonio Cortajarena & Patxi Alkorta & Aissa Bencherif, 2023. "PEMFC Current Control Using a Novel Compound Controller Enhanced by the Black Widow Algorithm: A Comprehensive Simulation Study," Sustainability, MDPI, vol. 15(18), pages 1-23, September.
    2. Mohamed Derbeli & Cristian Napole & Oscar Barambones & Jesus Sanchez & Isidro Calvo & Pablo Fernández-Bustamante, 2021. "Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications," Energies, MDPI, vol. 14(22), pages 1-31, November.
    3. Mohammed Yousri Silaa & Mohamed Derbeli & Oscar Barambones & Cristian Napole & Ali Cheknane & José María Gonzalez De Durana, 2021. "An Efficient and Robust Current Control for Polymer Electrolyte Membrane Fuel Cell Power System," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    4. Muhammad Majid Gulzar, 2023. "Maximum Power Point Tracking of a Grid Connected PV Based Fuel Cell System Using Optimal Control Technique," Sustainability, MDPI, vol. 15(5), pages 1-18, February.
    5. Javaid, Usman & Mehmood, Adeel & Iqbal, Jamshed & Uppal, Ali Arshad, 2023. "Neural network and URED observer based fast terminal integral sliding mode control for energy efficient polymer electrolyte membrane fuel cell used in vehicular technologies," Energy, Elsevier, vol. 269(C).
    6. Khlid Ben Hamad & Doudou N. Luta & Atanda K. Raji, 2021. "A Grid-Tied Fuel Cell Multilevel Inverter with Low Harmonic Distortions," Energies, MDPI, vol. 14(3), pages 1-24, January.
    7. Giuseppe De Lorenzo & Raffaele Giuseppe Agostino & Petronilla Fragiacomo, 2022. "Dynamic Electric Simulation Model of a Proton Exchange Membrane Electrolyzer System for Hydrogen Production," Energies, MDPI, vol. 15(17), pages 1-15, September.
    8. Mohamed Derbeli & Asma Charaabi & Oscar Barambones & Cristian Napole, 2021. "High-Performance Tracking for Proton Exchange Membrane Fuel Cell System PEMFC Using Model Predictive Control," Mathematics, MDPI, vol. 9(11), pages 1-17, May.
    9. Xiongfeng Deng & Yiqing Huang & Binzi Xu & Liang Tao, 2023. "Position and Attitude Tracking Finite-Time Adaptive Control for a VTOL Aircraft Using Global Fast Terminal Sliding Mode Control," Mathematics, MDPI, vol. 11(12), pages 1-22, June.
    10. Fredy A. Valenzuela & Reymundo Ramírez & Fermín Martínez & Onofre A. Morfín & Carlos E. Castañeda, 2020. "Super-Twisting Algorithm Applied to Velocity Control of DC Motor without Mechanical Sensors Dependence," Energies, MDPI, vol. 13(22), pages 1-15, November.
    11. Pawel Latosinski & Andrzej Bartoszewicz, 2023. "Sliding Mode Controllers in Energy Systems and Other Applications," Energies, MDPI, vol. 16(3), pages 1-4, January.
    12. Cristian Napole & Oscar Barambones & Mohamed Derbeli & Isidro Calvo & Mohammed Yousri Silaa & Javier Velasco, 2021. "High-Performance Tracking for Piezoelectric Actuators Using Super-Twisting Algorithm Based on Artificial Neural Networks," Mathematics, MDPI, vol. 9(3), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Derbeli & Oscar Barambones & Jose Antonio Ramos-Hernanz & Lassaad Sbita, 2019. "Real-Time Implementation of a Super Twisting Algorithm for PEM Fuel Cell Power System," Energies, MDPI, vol. 12(9), pages 1-20, April.
    2. Mohamed Derbeli & Asma Charaabi & Oscar Barambones & Cristian Napole, 2021. "High-Performance Tracking for Proton Exchange Membrane Fuel Cell System PEMFC Using Model Predictive Control," Mathematics, MDPI, vol. 9(11), pages 1-17, May.
    3. Mohamed Derbeli & Cristian Napole & Oscar Barambones & Jesus Sanchez & Isidro Calvo & Pablo Fernández-Bustamante, 2021. "Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications," Energies, MDPI, vol. 14(22), pages 1-31, November.
    4. Taofeek Afolabi & Hooman Farzaneh, 2023. "Optimal Design and Operation of an Off-Grid Hybrid Renewable Energy System in Nigeria’s Rural Residential Area, Using Fuzzy Logic and Optimization Techniques," Sustainability, MDPI, vol. 15(4), pages 1-33, February.
    5. Peng Zhang & Huibin Sui, 2020. "Maximum Power Point Tracking Technology of Photovoltaic Array under Partial Shading Based On Adaptive Improved Differential Evolution Algorithm," Energies, MDPI, vol. 13(5), pages 1-15, March.
    6. Tania García-Sánchez & Arbinda Kumar Mishra & Elías Hurtado-Pérez & Rubén Puché-Panadero & Ana Fernández-Guillamón, 2020. "A Controller for Optimum Electrical Power Extraction from a Small Grid-Interconnected Wind Turbine," Energies, MDPI, vol. 13(21), pages 1-16, November.
    7. Nicu Bizon & Mircea Raceanu & Emmanouel Koudoumas & Adriana Marinoiu & Emmanuel Karapidakis & Elena Carcadea, 2020. "Renewable/Fuel Cell Hybrid Power System Operation Using Two Search Controllers of the Optimal Power Needed on the DC Bus," Energies, MDPI, vol. 13(22), pages 1-26, November.
    8. Mehdi Jahangir Samet & Heikki Liimatainen & Oscar Patrick René van Vliet & Markus Pöllänen, 2021. "Road Freight Transport Electrification Potential by Using Battery Electric Trucks in Finland and Switzerland," Energies, MDPI, vol. 14(4), pages 1-22, February.
    9. Mohammad Hassan Khooban & Navid Vafamand & Jalil Boudjadar, 2019. "Tracking Control for Hydrogen Fuel Cell Systems in Zero-Emission Ferry Ships," Complexity, Hindawi, vol. 2019, pages 1-9, November.
    10. Vitor Fernão Pires & Armando Pires & Armando Cordeiro, 2023. "DC Microgrids: Benefits, Architectures, Perspectives and Challenges," Energies, MDPI, vol. 16(3), pages 1-20, January.
    11. Tavakol Aghaei, Vahid & Ağababaoğlu, Arda & Bawo, Biram & Naseradinmousavi, Peiman & Yıldırım, Sinan & Yeşilyurt, Serhat & Onat, Ahmet, 2023. "Energy optimization of wind turbines via a neural control policy based on reinforcement learning Markov chain Monte Carlo algorithm," Applied Energy, Elsevier, vol. 341(C).
    12. Hegazy Rezk & Rania M. Ghoniem & Seydali Ferahtia & Ahmed Fathy & Mohamed M. Ghoniem & Reem Alkanhel, 2022. "A Comparison of Different Renewable-Based DC Microgrid Energy Management Strategies for Commercial Buildings Applications," Sustainability, MDPI, vol. 14(24), pages 1-22, December.
    13. Pawel Latosinski & Andrzej Bartoszewicz, 2023. "Sliding Mode Controllers in Energy Systems and Other Applications," Energies, MDPI, vol. 16(3), pages 1-4, January.
    14. Mustapha Habib & Elmar Bollin & Qian Wang, 2023. "Battery Energy Management System Using Edge-Driven Fuzzy Logic," Energies, MDPI, vol. 16(8), pages 1-18, April.
    15. Piotr Bielaczyc & Rafal Sala & Tomasz Meinicke, 2021. "Analysis of Technical Capabilities, Methodology and Test Results of a Light-Commercial Vehicle Conversion to Battery Electric Powertrain," Energies, MDPI, vol. 14(4), pages 1-18, February.
    16. Rodriguez, Mauricio & Arcos–Aviles, Diego & Martinez, Wilmar, 2023. "Fuzzy logic-based energy management for isolated microgrid using meta-heuristic optimization algorithms," Applied Energy, Elsevier, vol. 335(C).
    17. Jamila Hemdani & Laid Degaa & Moez Soltani & Nassim Rizoug & Achraf Jabeur Telmoudi & Abdelkader Chaari, 2022. "Battery Lifetime Prediction via Neural Networks with Discharge Capacity and State of Health," Energies, MDPI, vol. 15(22), pages 1-17, November.
    18. Hegazy Rezk & Ahmed Fathy, 2020. "Performance Improvement of PEM Fuel Cell Using Variable Step-Size Incremental Resistance MPPT Technique," Sustainability, MDPI, vol. 12(14), pages 1-16, July.
    19. Jordi Renau & Víctor García & Luis Domenech & Pedro Verdejo & Antonio Real & Alberto Giménez & Fernando Sánchez & Antonio Lozano & Félix Barreras, 2021. "Novel Use of Green Hydrogen Fuel Cell-Based Combined Heat and Power Systems to Reduce Primary Energy Intake and Greenhouse Emissions in the Building Sector," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    20. Cong-Trang Nguyen & Thanh Long Duong & Minh Quan Duong & Duc Tung Le, 2020. "Chattering-Free Single-Phase Robustness Sliding Mode Controller for Mismatched Uncertain Interconnected Systems with Unknown Time-Varying Delays," Energies, MDPI, vol. 13(1), pages 1-27, January.

    More about this item

    Keywords

    PEMFC; QC-HOSM; step-up converter; DSPACE DS1104;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4317-:d:401564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.