IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i16p4218-d399189.html
   My bibliography  Save this article

Thermochemical Conversion of Biomass and Municipal Waste into Useful Energy Using Advanced HiTAG/HiTSG Technology

Author

Listed:
  • Jan Stąsiek

    (Faculty of Mechanical Engineering, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland)

  • Marek Szkodo

    (Faculty of Mechanical Engineering, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland)

Abstract

An advanced thermal conversion system involving high-temperature gasification of biomass and municipal waste into biofuel, syngas or hydrogen-rich gas is presented in this paper. The decomposition of solid biomass and wastes by gasification is carried out experimentally with a modern and innovative regenerator and updraft continuous gasifier, among others. A ceramic high-cycle regenerator provides extra energy for the thermal conversion of biomass or any other solids waste. Highly preheated air and steam gas (heated up to 1600 °C) was used as an oxidizing or gasification agent (feed gas). Preheated feed gas also enhances the thermal decomposition of the gasification solids for fuel gas. However, the main objective of this work is to promote new and advanced technology for the thermochemical conversion of biomass for alternative energy production. Selected results from experimental and numerical studies are also presented.

Suggested Citation

  • Jan Stąsiek & Marek Szkodo, 2020. "Thermochemical Conversion of Biomass and Municipal Waste into Useful Energy Using Advanced HiTAG/HiTSG Technology," Energies, MDPI, vol. 13(16), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4218-:d:399189
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/16/4218/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/16/4218/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kabalina, Natalia & Costa, Mário & Yang, Weihong & Martin, Andrew, 2017. "Energy and economic assessment of a polygeneration district heating and cooling system based on gasification of refuse derived fuels," Energy, Elsevier, vol. 137(C), pages 696-705.
    2. Oumer, A.N. & Hasan, M.M. & Baheta, Aklilu Tesfamichael & Mamat, Rizalman & Abdullah, A.A., 2018. "Bio-based liquid fuels as a source of renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 82-98.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jerzy Chojnacki & Jan Najser & Krzysztof Rokosz & Vaclav Peer & Jan Kielar & Bogusława Berner, 2020. "Syngas Composition: Gasification of Wood Pellet with Water Steam through a Reactor with Continuous Biomass Feed System," Energies, MDPI, vol. 13(17), pages 1-14, August.
    2. Xiongchao Lin & Wenshuai Xi & Jinze Dai & Caihong Wang & Yonggang Wang, 2020. "Prediction of Slag Characteristics Based on Artificial Neural Network for Molten Gasification of Hazardous Wastes," Energies, MDPI, vol. 13(19), pages 1-18, October.
    3. Jacek Grams, 2022. "Upgrading of Lignocellulosic Biomass to Hydrogen-Rich Gas," Energies, MDPI, vol. 16(1), pages 1-5, December.
    4. Valentina Segneri & Jean Henry Ferrasse & Antonio Trinca & Giorgio Vilardi, 2022. "An Overview of Waste Gasification and Syngas Upgrading Processes," Energies, MDPI, vol. 15(17), pages 1-7, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    2. Cardoso, J. & Silva, V. & Eusébio, D. & Brito, P. & Hall, M.J. & Tarelho, L., 2018. "Comparative scaling analysis of two different sized pilot-scale fluidized bed reactors operating with biomass substrates," Energy, Elsevier, vol. 151(C), pages 520-535.
    3. Jankowski, Krzysztof J. & Sokólski, Mateusz, 2021. "Spring camelina: Effect of mineral fertilization on the energy efficiency of biomass production," Energy, Elsevier, vol. 220(C).
    4. Park, Ho Young & Han, Karam & Kim, Hyun Hee & Park, Sangbin & Jang, Jihoon & Yu, Geun Sil & Ko, Ji Ho, 2020. "Comparisons of combustion characteristics between bioliquid and heavy fuel oil combustion in a 0.7 MWth pilot furnace and a 75 MWe utility boiler," Energy, Elsevier, vol. 192(C).
    5. Salman, Chaudhary Awais & Naqvi, Muhammad & Thorin, Eva & Yan, Jinyue, 2018. "Gasification process integration with existing combined heat and power plants for polygeneration of dimethyl ether or methanol: A detailed profitability analysis," Applied Energy, Elsevier, vol. 226(C), pages 116-128.
    6. Rahman, Arief & Dargusch, Paul & Wadley, David, 2021. "The political economy of oil supply in Indonesia and the implications for renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    7. Inayat, Abrar & Raza, Mohsin, 2019. "District cooling system via renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 360-373.
    8. Dahdah, Eliane & Estephane, Jane & Haydar, Reem & Youssef, Yara & El Khoury, Bilal & Gennequin, Cedric & Aboukaïs, Antoine & Abi-Aad, Edmond & Aouad, Samer, 2020. "Biodiesel production from refined sunflower oil over Ca–Mg–Al catalysts: Effect of the composition and the thermal treatment," Renewable Energy, Elsevier, vol. 146(C), pages 1242-1248.
    9. Kabalina, Natalia & Costa, Mário & Yang, Weihong & Martin, Andrew, 2018. "Impact of a reduction in heating, cooling and electricity loads on the performance of a polygeneration district heating and cooling system based on waste gasification," Energy, Elsevier, vol. 151(C), pages 594-604.
    10. Aydın, Selman, 2020. "Comprehensive analysis of combustion, performance and emissions of power generator diesel engine fueled with different source of biodiesel blends," Energy, Elsevier, vol. 205(C).
    11. Sekoai, Patrick T. & Ghimire, Anish & Ezeokoli, Obinna T. & Rao, Subramanya & Ngan, Wing Y. & Habimana, Olivier & Yao, Yuan & Yang, Pu & Yiu Fung, Aster Hei & Yoro, Kelvin O. & Daramola, Michael O. & , 2021. "Valorization of volatile fatty acids from the dark fermentation waste Streams-A promising pathway for a biorefinery concept," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    12. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Energy and economic analysis of a small hybrid solar-geothermal trigeneration system: A dynamic approach," Energy, Elsevier, vol. 208(C).
    13. sattari sadat, Seyed mohammad & Mirabdolah Lavasani, Arash & Ghaebi, Hadi, 2019. "Economic and thermodynamic evaluation of a new solid oxide fuel cell based polygeneration system," Energy, Elsevier, vol. 175(C), pages 515-533.
    14. Segurado, R. & Pereira, S. & Correia, D. & Costa, M., 2019. "Techno-economic analysis of a trigeneration system based on biomass gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 501-514.
    15. Balali, Yasaman & Stegen, Sascha, 2021. "Review of energy storage systems for vehicles based on technology, environmental impacts, and costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4218-:d:399189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.