Evaluating Patterns of Building Envelope Air Leakage with Infrared Thermography
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Kyung Hwa Cho & Sun Sook Kim, 2019. "Energy Performance Assessment According to Data Acquisition Levels of Existing Buildings," Energies, MDPI, vol. 12(6), pages 1-17, March.
- Asdrubali, Francesco & Baldinelli, Giorgio & Bianchi, Francesco, 2012. "A quantitative methodology to evaluate thermal bridges in buildings," Applied Energy, Elsevier, vol. 97(C), pages 365-373.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Amjad Almusaed & Asaad Almssad & Asaad Alasadi & Ibrahim Yitmen & Sammera Al-Samaraee, 2023. "Assessing the Role and Efficiency of Thermal Insulation by the “BIO-GREEN PANEL” in Enhancing Sustainability in a Built Environment," Sustainability, MDPI, vol. 15(13), pages 1-25, July.
- Yuqing Chang & Yuqian Wang & Wen Li & Zewen Wei & Shichuan Tang & Rui Chen, 2023. "Mechanisms, Techniques and Devices of Airborne Virus Detection: A Review," IJERPH, MDPI, vol. 20(8), pages 1-30, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kylili, Angeliki & Fokaides, Paris A. & Christou, Petros & Kalogirou, Soteris A., 2014. "Infrared thermography (IRT) applications for building diagnostics: A review," Applied Energy, Elsevier, vol. 134(C), pages 531-549.
- Blanca Tejedor & Eva Barreira & Vasco Peixoto de Freitas & Tomasz Kisilewicz & Katarzyna Nowak-Dzieszko & Umberto Berardi, 2020. "Impact of Stationary and Dynamic Conditions on the U-Value Measurements of Heavy-Multi Leaf Walls by Quantitative IRT," Energies, MDPI, vol. 13(24), pages 1-19, December.
- Anna Życzyńska & Zbigniew Suchorab & Jan Kočí & Robert Černý, 2020. "Energy Effects of Retrofitting the Educational Facilities Located in South-Eastern Poland," Energies, MDPI, vol. 13(10), pages 1-16, May.
- David Bienvenido-Huertas & Juan Antonio Fernández Quiñones & Juan Moyano & Carlos E. Rodríguez-Jiménez, 2018. "Patents Analysis of Thermal Bridges in Slab Fronts and Their Effect on Energy Demand," Energies, MDPI, vol. 11(9), pages 1-18, August.
- Asdrubali, Francesco & Baldinelli, Giorgio & Bianchi, Francesco & Costarelli, Danilo & Rotili, Antonella & Seracini, Marco & Vinti, Gianluca, 2018. "Detection of thermal bridges from thermographic images by means of image processing approximation algorithms," Applied Mathematics and Computation, Elsevier, vol. 317(C), pages 160-171.
- Capozzoli, Alfonso & Gorrino, Alice & Corrado, Vincenzo, 2013. "A building thermal bridges sensitivity analysis," Applied Energy, Elsevier, vol. 107(C), pages 229-243.
- Yang, Xinyan & Zhang, Shicong & Xu, Wei, 2019. "Impact of zero energy buildings on medium-to-long term building energy consumption in China," Energy Policy, Elsevier, vol. 129(C), pages 574-586.
- Akkurt, G.G. & Aste, N. & Borderon, J. & Buda, A. & Calzolari, M. & Chung, D. & Costanzo, V. & Del Pero, C. & Evola, G. & Huerto-Cardenas, H.E. & Leonforte, F. & Lo Faro, A. & Lucchi, E. & Marletta, L, 2020. "Dynamic thermal and hygrometric simulation of historical buildings: Critical factors and possible solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
- Yu Hou & Rebekka Volk & Lucio Soibelman, 2021. "A Novel Building Temperature Simulation Approach Driven by Expanding Semantic Segmentation Training Datasets with Synthetic Aerial Thermal Images," Energies, MDPI, vol. 14(2), pages 1-16, January.
- Miłosz Raczyński & Radosław Rutkowski, 2020. "How Pro-Environmental Legal Regulations Affect the Design Process and Management of Multi-Family Residential Buildings in Poland," Energies, MDPI, vol. 13(20), pages 1-23, October.
- Nuno Simões & Joana Prata & António Tadeu, 2019. "3D Dynamic Simulation of Heat Conduction through a Building Corner Using a BEM Model in the Frequency Domain," Energies, MDPI, vol. 12(23), pages 1-27, December.
- Hye Gi Kim & Sun Sook Kim, 2020. "Development of Energy Benchmarks for Office Buildings Using the National Energy Consumption Database," Energies, MDPI, vol. 13(4), pages 1-18, February.
- Carlos Morón & Pablo Saiz & Daniel Ferrández & Rubén Felices, 2018. "Comparative Analysis of Infrared Thermography and CFD Modelling for Assessing the Thermal Performance of Buildings," Energies, MDPI, vol. 11(3), pages 1-19, March.
- Baldinelli, Giorgio & Bianchi, Francesco & Rotili, Antonella & Costarelli, Danilo & Seracini, Marco & Vinti, Gianluca & Asdrubali, Francesco & Evangelisti, Luca, 2018. "A model for the improvement of thermal bridges quantitative assessment by infrared thermography," Applied Energy, Elsevier, vol. 211(C), pages 854-864.
- Aïssani, A. & Chateauneuf, A. & Fontaine, J.-P. & Audebert, Ph., 2016. "Quantification of workmanship insulation defects and their impact on the thermal performance of building facades," Applied Energy, Elsevier, vol. 165(C), pages 272-284.
- Baglivo, Cristina & Congedo, Paolo Maria, 2015. "Design method of high performance precast external walls for warm climate by multi-objective optimization analysis," Energy, Elsevier, vol. 90(P2), pages 1645-1661.
- Ibrahim, Mohamad & Biwole, Pascal Henry & Wurtz, Etienne & Achard, Patrick, 2014. "Limiting windows offset thermal bridge losses using a new insulating coating," Applied Energy, Elsevier, vol. 123(C), pages 220-231.
- Fokaides, Paris A. & Jurelionis, Andrius & Gagyte, Laura & Kalogirou, Soteris A., 2016. "Mock target IR thermography for indoor air temperature measurement," Applied Energy, Elsevier, vol. 164(C), pages 676-685.
- Francesco Asdrubali & Cinzia Buratti & Franco Cotana & Giorgio Baldinelli & Michele Goretti & Elisa Moretti & Catia Baldassarri & Elisa Belloni & Francesco Bianchi & Antonella Rotili & Marco Vergoni &, 2013. "Evaluation of Green Buildings’ Overall Performance through in Situ Monitoring and Simulations," Energies, MDPI, vol. 6(12), pages 1-23, December.
- Stefano Converso & Paolo Civiero & Stefano Ciprigno & Ivana Veselinova & Saffa Riffat, 2023. "Toward a Fast but Reliable Energy Performance Evaluation Method for Existing Residential Building Stock," Energies, MDPI, vol. 16(9), pages 1-24, May.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3545-:d:382424. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.