IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i13p3469-d380410.html
   My bibliography  Save this article

A Neural Network for Monitoring and Characterization of Buildings with Environmental Quality Management, Part 1: Verification under Steady State Conditions

Author

Listed:
  • Marek Dudzik

    (Department of Traction and Traffic Control, Faculty of Electrical and Computer Engineering, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland)

  • Anna Romanska-Zapala

    (Department of Automation and Information Technology, Faculty of Electrical and Computer Engineering, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland)

  • Mark Bomberg

    (Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, New York, NY 13699, USA)

Abstract

Introducing integrated, automatic control to buildings operating with the environmental quality management (EQM) system, we found that existing energy models are not suitable for use in integrated control systems as they poorly represent the real time, interacting, and transient effects that occur under field conditions. We needed another high-precision estimator for energy efficiency and indoor environment and to this end we examined artificial neural networks (ANNs). This paper presents a road map for design and evaluation of ANN-based estimators of the given performance aspect in a complex interacting environment. It demonstrates that in creating a precise representation of a mathematical relationship one must evaluate the stability and fitness under randomly changing initial conditions. It also shows that ANN systems designed in this manner may have a high precision in characterizing the response of the building exposed to the variable outdoor climatic conditions. The absolute value of the relative errors ( M a x A R E ) being less than 1.4% for each stage of the ANN development proves that our objective of monitoring and EQM characterization can be reached.

Suggested Citation

  • Marek Dudzik & Anna Romanska-Zapala & Mark Bomberg, 2020. "A Neural Network for Monitoring and Characterization of Buildings with Environmental Quality Management, Part 1: Verification under Steady State Conditions," Energies, MDPI, vol. 13(13), pages 1-24, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3469-:d:380410
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/13/3469/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/13/3469/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michał Piasecki & Krystyna Kostyrko & Małgorzata Fedorczak-Cisak & Katarzyna Nowak, 2020. "Air Enthalpy as an IAQ Indicator in Hot and Humid Environment—Experimental Evaluation," Energies, MDPI, vol. 13(6), pages 1-21, March.
    2. Małgorzata Fedorczak-Cisak & Marcin Furtak & Jolanta Gintowt & Alicja Kowalska-Koczwara & Filip Pachla & Krzysztof Stypuła & Tadeusz Tatara, 2018. "Thermal and Vibration Comfort Analysis of a Nearly Zero-Energy Building in Poland," Sustainability, MDPI, vol. 10(10), pages 1-19, October.
    3. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    4. Mark Bomberg & Anna Romanska-Zapala & David Yarbrough, 2020. "Journey of American Building Physics: Steps Leading to the Current Scientific Revolution," Energies, MDPI, vol. 13(5), pages 1-12, February.
    5. Francesco Mancini & Gianluigi Lo Basso & Livio de Santoli, 2019. "Energy Use in Residential Buildings: Impact of Building Automation Control Systems on Energy Performance and Flexibility," Energies, MDPI, vol. 12(15), pages 1-21, July.
    6. Michał Piasecki & Małgorzata Fedorczak-Cisak & Marcin Furtak & Jacek Biskupski, 2019. "Experimental Confirmation of the Reliability of Fanger’s Thermal Comfort Model—Case Study of a Near-Zero Energy Building (NZEB) Office Building," Sustainability, MDPI, vol. 11(9), pages 1-25, April.
    7. von Grabe, Jörn, 2016. "Potential of artificial neural networks to predict thermal sensation votes," Applied Energy, Elsevier, vol. 161(C), pages 412-424.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marek Dudzik, 2020. "Towards Characterization of Indoor Environment in Smart Buildings: Modelling PMV Index Using Neural Network with One Hidden Layer," Sustainability, MDPI, vol. 12(17), pages 1-37, August.
    2. Mark Bomberg & Anna Romanska-Zapala & David Yarbrough, 2021. "Towards a New Paradigm for Building Science (Building Physics)," World, MDPI, vol. 2(2), pages 1-22, April.
    3. Mark Bomberg & Anna Romanska-Zapala & Paulo Santos, 2023. "The 4th Industrial Revolution Brings a Change in the Design Paradigm for New and Retrofitted Buildings," Energies, MDPI, vol. 16(4), pages 1-22, February.
    4. Przemysław Markiewicz-Zahorski & Joanna Rucińska & Małgorzata Fedorczak-Cisak & Michał Zielina, 2021. "Building Energy Performance Analysis after Changing Its Form of Use from an Office to a Residential Building," Energies, MDPI, vol. 14(3), pages 1-24, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marek Dudzik, 2020. "Towards Characterization of Indoor Environment in Smart Buildings: Modelling PMV Index Using Neural Network with One Hidden Layer," Sustainability, MDPI, vol. 12(17), pages 1-37, August.
    2. Piotr Michalak, 2021. "Selected Aspects of Indoor Climate in a Passive Office Building with a Thermally Activated Building System: A Case Study from Poland," Energies, MDPI, vol. 14(4), pages 1-22, February.
    3. Villanthenkodath, Muhammed Ashiq & Mahalik, Mantu Kumar, 2021. "Does economic growth respond to electricity consumption asymmetrically in Bangladesh? The implication for environmental sustainability," Energy, Elsevier, vol. 233(C).
    4. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    5. Mollik, Sazib & Rashid, M.M. & Hasanuzzaman, M. & Karim, M.E. & Hosenuzzaman, M., 2016. "Prospects, progress, policies, and effects of rural electrification in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 553-567.
    6. Obsatar Sinaga & Mohd Haizam Mohd Saudi & Djoko Roespinoedji & Mohd Shahril Ahmad Razimi, 2019. "The Dynamic Relationship between Natural Gas and Economic Growth: Evidence from Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 388-394.
    7. Teng, Meixuan & Burke, Paul J. & Liao, Hua, 2019. "The demand for coal among China's rural households: Estimates of price and income elasticities," Energy Economics, Elsevier, vol. 80(C), pages 928-936.
    8. Ruqayya Ibraheem & Ismat Nasim, 2021. "Globalization, Energy Use and Environmental Degradation in Thailand," iRASD Journal of Energy and Environment, International Research Association for Sustainable Development (iRASD), vol. 2(1), pages 01-11, June.
    9. Ouyang, Yaofu & Li, Peng, 2018. "On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach," Energy Economics, Elsevier, vol. 71(C), pages 238-252.
    10. Muhammad Shahbaz & Syed Jawad Hussain Shahzad & Mantu Kumar Mahalik & Perry Sadorsky, 2018. "How strong is the causal relationship between globalization and energy consumption in developed economies? A country-specific time-series and panel analysis," Applied Economics, Taylor & Francis Journals, vol. 50(13), pages 1479-1494, March.
    11. Sinha, Avik & Shahbaz, Muhammad, 2018. "Estimation of Environmental Kuznets Curve for CO2 emission: Role of renewable energy generation in India," Renewable Energy, Elsevier, vol. 119(C), pages 703-711.
    12. Miriam Müller & Oscar Reutter, 2017. "Vision Development towards a Sustainable North Rhine-Westphalia 2030 in a Science-Practice-Dialogue," Sustainability, MDPI, vol. 9(7), pages 1-27, June.
    13. Simshauser, P., 2019. "On the impact of government-initiated CfD’s in Australia’s National Electricity Market," Cambridge Working Papers in Economics 1901, Faculty of Economics, University of Cambridge.
    14. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    15. Mardones, Cristian, 2021. "Ex-post evaluation and cost-benefit analysis of a heater replacement program implemented in southern Chile," Energy, Elsevier, vol. 227(C).
    16. Pourshab, Nasrin & Tehrani, Mehdi Dadkhah & Toghraie, Davood & Rostami, Sara, 2020. "Application of double glazed façades with horizontal and vertical louvers to increase natural air flow in office buildings," Energy, Elsevier, vol. 200(C).
    17. Abre-Rehmat Qurat-ul-Ann & Faisal Mehmood Mirza, 2021. "Multidimensional Energy Poverty in Pakistan: Empirical Evidence from Household Level Micro Data," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 155(1), pages 211-258, May.
    18. GUPTA Monika, 2019. "Decomposing The Role Of Different Factors In Co2 Emissions Increase In South Asia," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 14(1), pages 72-86, April.
    19. Sujata Ashwarya, 2017. "Post-2003 Iran–Iraq Cooperation in the Oil and Gas Sector: Initiatives, Challenges, and Future Scenarios," Contemporary Review of the Middle East, , vol. 4(1), pages 84-118, March.
    20. Cheng-Yih Hong & Hsiu-Ching Chang, 2019. "Comparing the Impact of Wind Power and Solar Power Investment on Industrial Development: Application of Dynamic Energy Industry-related Models," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 38-44.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3469-:d:380410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.