IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2843-d366725.html
   My bibliography  Save this article

Modeling of Failure Probability for Reliability and Component Reuse of Electric and Electronic Equipment

Author

Listed:
  • Massimo Conti

    (Dipartimento di Ingegneria dell’Informazione, Università Politecnica delle Marche, 60126 Ancona, Italy)

  • Simone Orcioni

    (Dipartimento di Ingegneria dell’Informazione, Università Politecnica delle Marche, 60126 Ancona, Italy)

Abstract

Recently, the concept of “circular economy”, the design for end-of-life, the problem of reduction of waste of electronic and electrical equipment are becoming more and more important. The design of electronic systems for end-of-life considers the possibility of their repair, reuse and recycle, in order to reduce waste. This work proposes a new accurate model of failure probability density, that includes the failure probability of a used component in new equipment. The model has been tested, in conjunction with the International Electrotechnical Commission and Telcordia standard, in real industrial production. Eight years of historical faults have been analyzed and used to derive the fault models of the components. The model and analysis have been used for the analysis of real electronic products. The reuse of components could make an improvement to the reliability of the equipment.

Suggested Citation

  • Massimo Conti & Simone Orcioni, 2020. "Modeling of Failure Probability for Reliability and Component Reuse of Electric and Electronic Equipment," Energies, MDPI, vol. 13(11), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2843-:d:366725
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2843/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2843/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    2. Almalki, Saad J. & Nadarajah, Saralees, 2014. "Modifications of the Weibull distribution: A review," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 32-55.
    3. Danny Pigini & Massimo Conti, 2017. "NFC-Based Traceability in the Food Chain," Sustainability, MDPI, vol. 9(10), pages 1-20, October.
    4. Keshav Parajuly & Henrik Wenzel, 2017. "Product Family Approach in E-Waste Management: A Conceptual Framework for Circular Economy," Sustainability, MDPI, vol. 9(5), pages 1-14, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. M. Sakura R. H. Attanayake & R. M. Chandima Ratnayake, 2023. "Digitalization of Distribution Transformer Failure Probability Using Weibull Approach towards Digital Transformation of Power Distribution Systems," Future Internet, MDPI, vol. 15(2), pages 1-17, January.
    2. Santos, Augusto César de Jesus & Cavalcante, Cristiano Alexandre Virgínio & Wu, Shaomin, 2023. "Maintenance policies and models: A bibliometric and literature review of strategies for reuse and remanufacturing," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    3. Jessika Luth Richter & Sahra Svensson‐Hoglund & Carl Dalhammar & Jennifer D. Russell & Åke Thidell, 2023. "Taking stock for repair and refurbishing: A review of harvesting of spare parts from electrical and electronic products," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 868-881, June.
    4. Jie Liu & Qiu Tang & Wei Qiu & Jun Ma & Junfeng Duan, 2021. "Probability-Based Failure Evaluation for Power Measuring Equipment," Energies, MDPI, vol. 14(12), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaolin & Liu, Bin & Zhao, Xiujie, 2021. "A performance-based warranty for products subject to competing hard and soft failures," International Journal of Production Economics, Elsevier, vol. 233(C).
    2. Xiangang Cao & Pengfei Li & Song Ming, 2021. "Remaining Useful Life Prediction-Based Maintenance Decision Model for Stochastic Deterioration Equipment under Data-Driven," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    3. Liang, Qingzhu & Yang, Yinghao & Peng, Changhong, 2023. "A reliability model for systems subject to mutually dependent degradation processes and random shocks under dynamic environments," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    4. Horațiu Vermeșan & Ancuța-Elena Tiuc & Marius Purcar, 2019. "Advanced Recovery Techniques for Waste Materials from IT and Telecommunication Equipment Printed Circuit Boards," Sustainability, MDPI, vol. 12(1), pages 1-23, December.
    5. Zhang, Jian-Xun & Si, Xiao-Sheng & Du, Dang-Bo & Hu, Chang-Hua & Hu, Chen, 2020. "A novel iterative approach of lifetime estimation for standby systems with deteriorating spare parts," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    6. Zhang, Nan & Cai, Kaiquan & Zhang, Jun & Wang, Tian, 2022. "A condition-based maintenance policy considering failure dependence and imperfect inspection for a two-component system," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    7. Zhou, Shirong & Tang, Yincai & Xu, Ancha, 2021. "A generalized Wiener process with dependent degradation rate and volatility and time-varying mean-to-variance ratio," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    8. Xiaodong Xu & Chuanqiang Yu & Shengjin Tang & Xiaoyan Sun & Xiaosheng Si & Lifeng Wu, 2019. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Wiener Processes with Considering the Relaxation Effect," Energies, MDPI, vol. 12(9), pages 1-17, May.
    9. Wang, Xiaofei & Wang, Bing Xing & Jiang, Pei Hua & Hong, Yili, 2020. "Accurate reliability inference based on Wiener process with random effects for degradation data," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    10. Ma, Jie & Cai, Li & Liao, Guobo & Yin, Hongpeng & Si, Xiaosheng & Zhang, Peng, 2023. "A multi-phase Wiener process-based degradation model with imperfect maintenance activities," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    11. Chiachío, Juan & Jalón, María L. & Chiachío, Manuel & Kolios, Athanasios, 2020. "A Markov chains prognostics framework for complex degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    12. Fang, Chen & Cui, Lirong, 2021. "Balanced Systems by Considering Multi-state Competing Risks Under Degradation Processes," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    13. Yolanda M. Gómez & Diego I. Gallardo & Carolina Marchant & Luis Sánchez & Marcelo Bourguignon, 2023. "An In-Depth Review of the Weibull Model with a Focus on Various Parameterizations," Mathematics, MDPI, vol. 12(1), pages 1-19, December.
    14. Zhang, Jian-Xun & Zhang, Jia-Ling & Zhang, Zheng-Xin & Li, Tian-Mei & Si, Xiao-Sheng, 2024. "Remaining useful life prediction for stochastic degrading devices incorporating quantization," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    15. Bentaha, Mohand-Lounes & Voisin, Alexandre & Marangé, Pascale, 2020. "A decision tool for disassembly process planning under end-of-life product quality," International Journal of Production Economics, Elsevier, vol. 219(C), pages 386-401.
    16. Yves Langeron & Khac Tuan Huynh & Antoine Grall, 2021. "A root location-based framework for degradation modeling of dynamic systems with predictive maintenance perspective," Journal of Risk and Reliability, , vol. 235(2), pages 253-267, April.
    17. XiaoFei, Lu & Min, Liu, 2014. "Hazard rate function in dynamic environment," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 50-60.
    18. Wang, Liying & Song, Yushuang & Zhang, Wenhua & Ling, Xiaoliang, 2023. "Condition-based inspection, component reallocation and replacement optimization of two-component interchangeable series system," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    19. Yan, Tao & Lei, Yaguo & Wang, Biao & Han, Tianyu & Si, Xiaosheng & Li, Naipeng, 2020. "Joint maintenance and spare parts inventory optimization for multi-unit systems considering imperfect maintenance actions," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    20. Sulewski Piotr & Szymkowiak Magdalena, 2022. "The Weibull lifetime model with randomised failure-free time," Statistics in Transition New Series, Statistics Poland, vol. 23(4), pages 59-76, December.

    More about this item

    Keywords

    WEEE; reliability; reuse;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2843-:d:366725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.