IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2019i1p27-d299743.html
   My bibliography  Save this article

Research on Energy Storage Optimization for Large-Scale PV Power Stations under Given Long-Distance Delivery Mode

Author

Listed:
  • Yang Yang

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China
    School of Civil Engineering, Tianjin University, Tianjin 300072, China)

  • Chong Lian

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China
    School of Civil Engineering, Tianjin University, Tianjin 300072, China)

  • Chao Ma

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China
    School of Civil Engineering, Tianjin University, Tianjin 300072, China)

  • Yusheng Zhang

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China
    School of Civil Engineering, Tianjin University, Tianjin 300072, China)

Abstract

Western China has good conditions for constructing large-scale photovoltaic (PV) power stations; however, such power plants with large fluctuations and strong randomness suffer from the long-distance power transmission problem, which needs to be solved. For large-scale PV power stations that do not have the conditions for simultaneous hydropower and PV power, this study examined long-distance delivery mode and energy storage optimization. The objective was to realize the long-distance transmission of electrical energy and maximize the economic value of the energy storage and PV power storage. For a large-scale PV power station, the energy storage optimization was modelled under a given long-distance delivery mode, and the economic evaluation system quantified using the net present value (NPV) of the battery was based on the energy dispatch optimization model. By contrast, a lithium battery performance model was developed. Therefore, further analysis of the economics of the energy storage and obtaining the best capacity of the energy storage battery and corresponding replacement cycle considered battery degradation. The case study of Qinghai Gonghe 100 MWp demonstration base PV power station showed that the optimal energy storage capacity was 5 MWh, and the optimal replacement period was 2 years. Therefore, the annual abandoned electricity was reduced by 3.051 × 10 4 MWh compared with no energy storage. The utilization rate of both the PV power station and quality of the delivered electricity were modelled to realize a long-distance transmission to the grid net. This will have an important guiding significance to develop and construct large-scale single PV power stations.

Suggested Citation

  • Yang Yang & Chong Lian & Chao Ma & Yusheng Zhang, 2019. "Research on Energy Storage Optimization for Large-Scale PV Power Stations under Given Long-Distance Delivery Mode," Energies, MDPI, vol. 13(1), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:27-:d:299743
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/27/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/27/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nhung Nguyen Hong & Yosuke Nakanishi, 2019. "Optimal Scheduling of an Isolated Wind-Diesel-Energy Storage System Considering Fast Frequency Response and Forecast Error," Energies, MDPI, vol. 12(5), pages 1-20, March.
    2. Kou, Peng & Gao, Feng & Guan, Xiaohong, 2015. "Stochastic predictive control of battery energy storage for wind farm dispatching: Using probabilistic wind power forecasts," Renewable Energy, Elsevier, vol. 80(C), pages 286-300.
    3. Zhang, Sufang, 2016. "Analysis of DSPV (distributed solar PV) power policy in China," Energy, Elsevier, vol. 98(C), pages 92-100.
    4. Heide, Dominik & von Bremen, Lueder & Greiner, Martin & Hoffmann, Clemens & Speckmann, Markus & Bofinger, Stefan, 2010. "Seasonal optimal mix of wind and solar power in a future, highly renewable Europe," Renewable Energy, Elsevier, vol. 35(11), pages 2483-2489.
    5. Rodrigues, E.M.G. & Godina, R. & Santos, S.F. & Bizuayehu, A.W. & Contreras, J. & Catalão, J.P.S., 2014. "Energy storage systems supporting increased penetration of renewables in islanded systems," Energy, Elsevier, vol. 75(C), pages 265-280.
    6. Chao Ma & Sen Dong & Jijian Lian & Xiulan Pang, 2019. "Multi-Objective Sizing of Hybrid Energy Storage System for Large-Scale Photovoltaic Power Generation System," Sustainability, MDPI, vol. 11(19), pages 1-15, October.
    7. Wei, Max & Smith, Sarah J. & Sohn, Michael D., 2017. "Experience curve development and cost reduction disaggregation for fuel cell markets in Japan and the US," Applied Energy, Elsevier, vol. 191(C), pages 346-357.
    8. Sun, Honghang & Zhi, Qiang & Wang, Yibo & Yao, Qiang & Su, Jun, 2014. "China’s solar photovoltaic industry development: The status quo, problems and approaches," Applied Energy, Elsevier, vol. 118(C), pages 221-230.
    9. Hoppmann, Joern & Volland, Jonas & Schmidt, Tobias S. & Hoffmann, Volker H., 2014. "The economic viability of battery storage for residential solar photovoltaic systems – A review and a simulation model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1101-1118.
    10. Li, Bei & Roche, Robin & Paire, Damien & Miraoui, Abdellatif, 2017. "Sizing of a stand-alone microgrid considering electric power, cooling/heating, hydrogen loads and hydrogen storage degradation," Applied Energy, Elsevier, vol. 205(C), pages 1244-1259.
    11. Zhang, Yachao & Le, Jian & Liao, Xiaobing & Zheng, Feng & Liu, Kaipei & An, Xueli, 2018. "Multi-objective hydro-thermal-wind coordination scheduling integrated with large-scale electric vehicles using IMOPSO," Renewable Energy, Elsevier, vol. 128(PA), pages 91-107.
    12. Ping, Xiaoge & Jiang, Zhigang & Li, Chunwang, 2012. "Social and ecological effects of biomass utilization and the willingness to use clean energy in the eastern Qinghai–Tibet plateau," Energy Policy, Elsevier, vol. 51(C), pages 828-833.
    13. Sufang Zhang, . "Analysis of Distributed Solar Photovoltaic (DSPV) Power Policy in China," Chapters, in: Shigeru Kimura & Youngho Chang & Yanfei Li (ed.), Financing Renewable Energy Development in East Asia Summit Countries A Primer of Effective Policy Instruments, chapter 5, pages 137-159, Economic Research Institute for ASEAN and East Asia (ERIA).
    14. Wei Ma & Wei Wang & Xuezhi Wu & Ruonan Hu & Fen Tang & Weige Zhang, 2019. "Control Strategy of a Hybrid Energy Storage System to Smooth Photovoltaic Power Fluctuations Considering Photovoltaic Output Power Curtailment," Sustainability, MDPI, vol. 11(5), pages 1-22, March.
    15. Hua, Yaping & Oliphant, Monica & Hu, Eric Jing, 2016. "Development of renewable energy in Australia and China: A comparison of policies and status," Renewable Energy, Elsevier, vol. 85(C), pages 1044-1051.
    16. Heide, Dominik & Greiner, Martin & von Bremen, Lüder & Hoffmann, Clemens, 2011. "Reduced storage and balancing needs in a fully renewable European power system with excess wind and solar power generation," Renewable Energy, Elsevier, vol. 36(9), pages 2515-2523.
    17. Zhou, Sheng & Wang, Yu & Zhou, Yuyu & Clarke, Leon E. & Edmonds, James A., 2018. "Roles of wind and solar energy in China’s power sector: Implications of intermittency constraints," Applied Energy, Elsevier, vol. 213(C), pages 22-30.
    18. Ming, Zeng & Honglin, Li & Mingjuan, Ma & Na, Li & Song, Xue & Liang, Wang & Lilin, Peng, 2013. "Review on transaction status and relevant policies of southern route in China's West–East Power Transmission," Renewable Energy, Elsevier, vol. 60(C), pages 454-461.
    19. Engels, Jonas & Claessens, Bert & Deconinck, Geert, 2019. "Techno-economic analysis and optimal control of battery storage for frequency control services, applied to the German market," Applied Energy, Elsevier, vol. 242(C), pages 1036-1049.
    20. Liu, Li-qun & Wang, Zhi-xin & Zhang, Hua-qiang & Xue, Ying-cheng, 2010. "Solar energy development in China--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 301-311, January.
    21. Indra Overland & Gunilla Reischl, 2018. "A place in the Sun? IRENA’s position in the global energy governance landscape," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 18(3), pages 335-350, June.
    22. Dujardin, Jérôme & Kahl, Annelen & Kruyt, Bert & Bartlett, Stuart & Lehning, Michael, 2017. "Interplay between photovoltaic, wind energy and storage hydropower in a fully renewable Switzerland," Energy, Elsevier, vol. 135(C), pages 513-525.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panagiota M. Deligianni & George J. Tsekouras & Costas D. Tsirekis & Vassiliki T. Kontargyri & Fotis D. Kanellos & Panagiotis A. Kontaxis, 2020. "Techno-Economic Optimization Analysis of an Autonomous Photovoltaic Power System for a Shoreline Electrode Station of HVDC Link: Case Study of an Electrode Station on the Small Island of Stachtoroi fo," Energies, MDPI, vol. 13(21), pages 1-49, October.
    2. Nataliia Shamarova & Konstantin Suslov & Pavel Ilyushin & Ilia Shushpanov, 2022. "Review of Battery Energy Storage Systems Modeling in Microgrids with Renewables Considering Battery Degradation," Energies, MDPI, vol. 15(19), pages 1-18, September.
    3. Wojciech Cieslik & Filip Szwajca & Wojciech Golimowski & Andrew Berger, 2021. "Experimental Analysis of Residential Photovoltaic (PV) and Electric Vehicle (EV) Systems in Terms of Annual Energy Utilization," Energies, MDPI, vol. 14(4), pages 1-21, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bartlett, Stuart & Dujardin, Jérôme & Kahl, Annelen & Kruyt, Bert & Manso, Pedro & Lehning, Michael, 2018. "Charting the course: A possible route to a fully renewable Swiss power system," Energy, Elsevier, vol. 163(C), pages 942-955.
    2. Musa, S. Danlami & Zhonghua, Tang & Ibrahim, Abdullateef O. & Habib, Mukhtar, 2018. "China's energy status: A critical look at fossils and renewable options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2281-2290.
    3. Han, Mengyao & Xiong, Jiao & Wang, Siyuan & Yang, Yu, 2020. "Chinese photovoltaic poverty alleviation: Geographic distribution, economic benefits and emission mitigation," Energy Policy, Elsevier, vol. 144(C).
    4. Bai, Bo & Xiong, Siqin & Song, Bo & Xiaoming, Ma, 2019. "Economic analysis of distributed solar photovoltaics with reused electric vehicle batteries as energy storage systems in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 213-229.
    5. Chao Ma & Sen Dong & Jijian Lian & Xiulan Pang, 2019. "Multi-Objective Sizing of Hybrid Energy Storage System for Large-Scale Photovoltaic Power Generation System," Sustainability, MDPI, vol. 11(19), pages 1-15, October.
    6. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    7. Fuquan Zhao & Feiqi Liu & Han Hao & Zongwei Liu, 2020. "Carbon Emission Reduction Strategy for Energy Users in China," Sustainability, MDPI, vol. 12(16), pages 1-19, August.
    8. Nayak-Luke, Richard & Bañares-Alcántara, René & Collier, Sam, 2021. "Quantifying network flexibility requirements in terms of energy storage," Renewable Energy, Elsevier, vol. 167(C), pages 869-882.
    9. Nguyen, Hai Tra & Safder, Usman & Nhu Nguyen, X.Q. & Yoo, ChangKyoo, 2020. "Multi-objective decision-making and optimal sizing of a hybrid renewable energy system to meet the dynamic energy demands of a wastewater treatment plant," Energy, Elsevier, vol. 191(C).
    10. Deetjen, Thomas A. & Martin, Henry & Rhodes, Joshua D. & Webber, Michael E., 2018. "Modeling the optimal mix and location of wind and solar with transmission and carbon pricing considerations," Renewable Energy, Elsevier, vol. 120(C), pages 35-50.
    11. Huber, Matthias & Dimkova, Desislava & Hamacher, Thomas, 2014. "Integration of wind and solar power in Europe: Assessment of flexibility requirements," Energy, Elsevier, vol. 69(C), pages 236-246.
    12. Dujardin, Jérôme & Kahl, Annelen & Kruyt, Bert & Bartlett, Stuart & Lehning, Michael, 2017. "Interplay between photovoltaic, wind energy and storage hydropower in a fully renewable Switzerland," Energy, Elsevier, vol. 135(C), pages 513-525.
    13. Handriyanti Diah Puspitarini & Baptiste François & Marco Baratieri & Casey Brown & Mattia Zaramella & Marco Borga, 2020. "Complementarity between Combined Heat and Power Systems, Solar PV and Hydropower at a District Level: Sensitivity to Climate Characteristics along an Alpine Transect," Energies, MDPI, vol. 13(16), pages 1-19, August.
    14. Tafarte, Philip & Das, Subhashree & Eichhorn, Marcus & Thrän, Daniela, 2014. "Small adaptations, big impacts: Options for an optimized mix of variable renewable energy sources," Energy, Elsevier, vol. 72(C), pages 80-92.
    15. Sinn, Hans-Werner, 2017. "Buffering volatility: A study on the limits of Germany's energy revolution," European Economic Review, Elsevier, vol. 99(C), pages 130-150.
    16. Child, Michael & Kemfert, Claudia & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 139, pages 80-101.
    17. Rodriguez, Rolando A. & Becker, Sarah & Greiner, Martin, 2015. "Cost-optimal design of a simplified, highly renewable pan-European electricity system," Energy, Elsevier, vol. 83(C), pages 658-668.
    18. Luo, Guo-liang & Long, Cheng-feng & Wei, Xiao & Tang, Wen-jun, 2016. "Financing risks involved in distributed PV power generation in China and analysis of countermeasures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 93-101.
    19. Kejia Yang & Johan Schot & Bernhard Truffer, 2020. "Shaping the Directionality of Sustainability Transitions: The Diverging Development Patterns of Solar PV in Two Chinese Provinces," SPRU Working Paper Series 2020-14, SPRU - Science Policy Research Unit, University of Sussex Business School.
    20. Baptiste François & Benoit Hingray & Marco Borga & Davide Zoccatelli & Casey Brown & Jean-Dominique Creutin, 2018. "Impact of Climate Change on Combined Solar and Run-of-River Power in Northern Italy," Energies, MDPI, vol. 11(2), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:27-:d:299743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.