IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i7p1186-d217455.html
   My bibliography  Save this article

Liquid Water Transport in Porous Metal Foam Flow-Field Fuel Cells: A Two-Phase Numerical Modelling and Ex-Situ Experimental Study

Author

Listed:
  • Ashley Fly

    (Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough LE11 3TU, UK)

  • Kyoungyoun Kim

    (Department of Mechanical Engineering, Hanbat National University, Daejeon 34158, South Korea)

  • John Gordon

    (Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough LE11 3TU, UK)

  • Daniel Butcher

    (Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough LE11 3TU, UK)

  • Rui Chen

    (Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough LE11 3TU, UK)

Abstract

Proton exchange membrane fuel cells (PEMFCs) using porous metallic foam flow-field plates have been demonstrated as an alternative to conventional rib and channel designs, showing high performance at high currents. However, the transport of liquid product water through metal foam flow-field plates in PEMFC conditions is not well understood, especially at the individual pore level. In this work, ex-situ experiments are conducted to visualise liquid water movement within a metal foam flow-field plate, considering hydrophobicity, foam pore size and air flow rate. A two-phase numerical model is then developed to further investigate the fundamental water transport behaviour in porous metal foam flow-field plates. Both the experimental and numerical work demonstrate that unlike conventional PEMFC channels, air flow rate does not have a strong influence on water removal due to the high surface tensions between the water and foam pore ligaments. A hydrophobic foam was seen to transport liquid water away from the initial injection point faster than a hydrophilic foam. In ex-situ tests, liquid water forms and maintains a random preferential pathway until the flow-field edge is reached. These results suggest that controlled foam hydrophobicity and pore size is the best way of managing water distribution in PEMFCs with porous flow-field plates.

Suggested Citation

  • Ashley Fly & Kyoungyoun Kim & John Gordon & Daniel Butcher & Rui Chen, 2019. "Liquid Water Transport in Porous Metal Foam Flow-Field Fuel Cells: A Two-Phase Numerical Modelling and Ex-Situ Experimental Study," Energies, MDPI, vol. 12(7), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1186-:d:217455
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/7/1186/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/7/1186/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sasmito, Agus P. & Kurnia, Jundika C. & Mujumdar, Arun S., 2012. "Numerical evaluation of various gas and coolant channel designs for high performance liquid-cooled proton exchange membrane fuel cell stacks," Energy, Elsevier, vol. 44(1), pages 278-291.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. García-Salaberri, Pablo A. & Perego, Andrea & Wu, Rui & Zenyuk, Iryna V., 2025. "Boosting the performance of polymer electrolyte membrane fuel cells with porous flow fields: Pros and cons," Energy, Elsevier, vol. 318(C).
    2. Bao, Zhiming & Niu, Zhiqiang & Jiao, Kui, 2020. "Gas distribution and droplet removal of metal foam flow field for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 280(C).
    3. Jin-Soo Park, 2021. "Hydrogen-Based Energy Conversion: Polymer Electrolyte Fuel Cells and Electrolysis," Energies, MDPI, vol. 14(16), pages 1-2, August.
    4. Guo, Hang & Zhao, Qiang & Ye, Fang, 2022. "An experimental study on gas and liquid two-phase flow in orientated-type flow channels of proton exchange membrane fuel cells by using a side-view method," Renewable Energy, Elsevier, vol. 188(C), pages 603-618.
    5. Lifen Zhang & Xiaoxue Zhang & Zhenxia Liu, 2020. "An Efficient Numerical Method for Pressure Loss Investigation in an Oil/Air Separator with Metal Foam in an Aero-Engine," Energies, MDPI, vol. 13(2), pages 1-17, January.
    6. Zhang, Lu & Liu, Jie & Du, Shaojie & Zhao, Chen, 2024. "Multiphase flow dynamics in metal foam proton exchange membrane fuel cell," Renewable Energy, Elsevier, vol. 226(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kurnia, Jundika C. & Sasmito, Agus P. & Shamim, Tariq, 2017. "Performance evaluation of a PEM fuel cell stack with variable inlet flows under simulated driving cycle conditions," Applied Energy, Elsevier, vol. 206(C), pages 751-764.
    2. Ren, Zhijun & Zhang, Dongming & Wang, Zaiyi, 2012. "Stacks with TiN/titanium as the bipolar plate for PEMFCs," Energy, Elsevier, vol. 48(1), pages 577-581.
    3. Amirfazli, Amir & Asghari, Saeed & Sarraf, Mohammad, 2018. "An investigation into the effect of manifold geometry on uniformity of temperature distribution in a PEMFC stack," Energy, Elsevier, vol. 145(C), pages 141-151.
    4. Boyaci San, Fatma Gül & Isik-Gulsac, Isil & Okur, Osman, 2013. "Analysis of the polymer composite bipolar plate properties on the performance of PEMFC (polymer electrolyte membrane fuel cells) by RSM (response surface methodology)," Energy, Elsevier, vol. 55(C), pages 1067-1075.
    5. Mohammadi-Ahmar, Akbar & Solati, Ali & Osanloo, Behzad & Hatami, Mohammad, 2017. "Effect of number and arrangement of separator electrode assembly (SEA) on the performance of square tubular PEM fuel cells," Energy, Elsevier, vol. 137(C), pages 302-313.
    6. Ashrafi, Moosa & Kanani, Homayoon & Shams, Mehrzad, 2018. "Numerical and experimental study of two-phase flow uniformity in channels of parallel PEM fuel cells with modified Z-type flow-fields," Energy, Elsevier, vol. 147(C), pages 317-328.
    7. Pei, Pucheng & Li, Yuehua & Xu, Huachi & Wu, Ziyao, 2016. "A review on water fault diagnosis of PEMFC associated with the pressure drop," Applied Energy, Elsevier, vol. 173(C), pages 366-385.
    8. Jiangnan Song & Ying Huang & Yi Liu & Zongpeng Ma & Lunjun Chen & Taike Li & Xiang Zhang, 2022. "Numerical Investigation and Optimization of Cooling Flow Field Design for Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 15(7), pages 1-17, April.
    9. Chen, Qin & Zhang, Guobin & Zhang, Xuzhong & Sun, Cheng & Jiao, Kui & Wang, Yun, 2021. "Thermal management of polymer electrolyte membrane fuel cells: A review of cooling methods, material properties, and durability," Applied Energy, Elsevier, vol. 286(C).
    10. Islam, M.R. & Shabani, B. & Rosengarten, G. & Andrews, J., 2015. "The potential of using nanofluids in PEM fuel cell cooling systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 523-539.
    11. Marine Cornet & Erwan Tardy & Jean-Philippe Poirot-Crouvezier & Yann Bultel, 2024. "Impact of Coolant Operation on Performance and Heterogeneities in Large Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 18(1), pages 1-27, December.
    12. Wenbin Wang & Haoran Jia & Guoxiang Li & Wen Sun & Ke Sun & Shuzhan Bai & Hao Cheng, 2023. "Optimization of Cooling Channel Structure of Bipolar Plate for Proton Exchange Membrane Fuel Cells Based on CFD Analysis," Energies, MDPI, vol. 16(16), pages 1-14, August.
    13. Zhu, Kai-Qi & Ding, Quan & Zhang, Ben-Xi & Xu, Jiang-Hai & Li, Dan-Dan & Yang, Yan-Ru & Lee, Duu-Jong & Wan, Zhong-Min & Wang, Xiao-Dong, 2024. "Performance enhancement of air-cooled PEMFC stack by employing tapered oblique fin channels: Experimental study of a full stack and numerical analysis of a typical single cell," Applied Energy, Elsevier, vol. 358(C).
    14. Colmenar-Santos, Antonio & Alberdi-Jiménez, Lucía & Nasarre-Cortés, Lorenzo & Mora-Larramona, Joaquín, 2014. "Residual heat use generated by a 12 kW fuel cell in an electric vehicle heating system," Energy, Elsevier, vol. 68(C), pages 182-190.
    15. Rahgoshay, S.M. & Ranjbar, A.A. & Ramiar, A. & Alizadeh, E., 2017. "Thermal investigation of a PEM fuel cell with cooling flow field," Energy, Elsevier, vol. 134(C), pages 61-73.
    16. Yang, Luo & Nik-Ghazali, Nik-Nazri & Ali, Mohammed A.H. & Chong, Wen Tong & Yang, Zhenzhong & Liu, Haichao, 2023. "A review on thermal management in proton exchange membrane fuel cells: Temperature distribution and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    17. Huang, Zhen-Ming & Su, Ay & Liu, Ying-Chieh, 2014. "Development and testing of a hybrid system with a sub-kW open-cathode type PEM (proton exchange membrane) fuel cell stack," Energy, Elsevier, vol. 72(C), pages 547-553.
    18. Rakhshanpouri, S. & Rowshanzamir, S., 2013. "Water transport through a PEM (proton exchange membrane) fuel cell in a seven-layer model," Energy, Elsevier, vol. 50(C), pages 220-231.
    19. Chen, Ben & Deng, Qihao & Yang, Guanghua & Zhou, Yu & Chen, Wenshang & Cai, Yonghua & Tu, Zhengkai, 2023. "Numerical study on heat transfer characteristics and performance evaluation of PEMFC based on multiphase electrochemical model coupled with cooling channel," Energy, Elsevier, vol. 285(C).
    20. Han, Chaoling & Chen, Zhenqian, 2021. "Study on the synergism of thermal transport and electrochemical of PEMFC based on N, P co-doped graphene substrate electrode," Energy, Elsevier, vol. 214(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1186-:d:217455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.