IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i7p1184-d217417.html
   My bibliography  Save this article

Solid-State NaBH 4 /Co Composite as Hydrogen Storage Material: Effect of the Pressing Pressure on Hydrogen Generation Rate

Author

Listed:
  • Olga V. Netskina

    (Laboratory of Hydrides Investigation, Boreskov Institute of Catalysis SB RAS (BIC SB RAS), Novosibirsk 630090, Russia)

  • Elena S. Tayban

    (Laboratory of Hydrides Investigation, Boreskov Institute of Catalysis SB RAS (BIC SB RAS), Novosibirsk 630090, Russia)

  • Anna M. Ozerova

    (Laboratory of Hydrides Investigation, Boreskov Institute of Catalysis SB RAS (BIC SB RAS), Novosibirsk 630090, Russia)

  • Oxana V. Komova

    (Laboratory of Hydrides Investigation, Boreskov Institute of Catalysis SB RAS (BIC SB RAS), Novosibirsk 630090, Russia)

  • Valentina I. Simagina

    (Laboratory of Hydrides Investigation, Boreskov Institute of Catalysis SB RAS (BIC SB RAS), Novosibirsk 630090, Russia)

Abstract

A solid-state NaBH 4 /Co composite has been employed as a hydrogen-generating material, as an alternative to sodium borohydride solutions, in the long storage of hydrogen. Hydrogen generation begins in the presence of cobalt-based catalysts, immediately after water is added to a NaBH 4 /Co composite, as a result of sodium borohydride hydrolysis. The hydrogen generation rate has been investigated as a function of the pressure used to press hydrogen-generating composites from a mechanical mixture of the hydride and cobalt chloride hexahydrate. The hydrogen generation rate was observed to increase with the increase of this pressure. Pre-reduction of the cobalt chloride, using a sodium borohydride solution, leveled this dependence with a two-fold decrease in the gas generation rate. According to TEM and XPS data, oxidation of the particles of the pre-reduced cobalt catalyst took place during preparation of the composites, and it is this oxidation that appears to be the main reason for its low activity in sodium borohydride hydrolysis.

Suggested Citation

  • Olga V. Netskina & Elena S. Tayban & Anna M. Ozerova & Oxana V. Komova & Valentina I. Simagina, 2019. "Solid-State NaBH 4 /Co Composite as Hydrogen Storage Material: Effect of the Pressing Pressure on Hydrogen Generation Rate," Energies, MDPI, vol. 12(7), pages 1-7, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1184-:d:217417
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/7/1184/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/7/1184/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Salvi, B.L. & Subramanian, K.A., 2015. "Sustainable development of road transportation sector using hydrogen energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1132-1155.
    2. Netskina, O.V. & Komova, O.V. & Simagina, V.I. & Odegova, G.V. & Prosvirin, I.P. & Bulavchenko, O.A., 2016. "Aqueous-alkaline NaBH4 solution: The influence of storage duration of solutions on reduction and activity of cobalt catalysts," Renewable Energy, Elsevier, vol. 99(C), pages 1073-1081.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Netskina, O.V. & Tayban, E.S. & Prosvirin, I.P. & Komova, O.V. & Simagina, V.I., 2020. "Hydrogen storage systems based on solid-state NaBH4/Co composite: Effect of catalyst precursor on hydrogen generation rate," Renewable Energy, Elsevier, vol. 151(C), pages 278-285.
    2. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.
    4. Chintala, Venkateswarlu & Subramanian, K.A., 2017. "A comprehensive review on utilization of hydrogen in a compression ignition engine under dual fuel mode," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 472-491.
    5. Tran Thi Giang & Siriporn Lunprom & Qiang Liao & Alissara Reungsang & Apilak Salakkam, 2019. "Enhancing Hydrogen Production from Chlorella sp. Biomass by Pre-Hydrolysis with Simultaneous Saccharification and Fermentation (PSSF)," Energies, MDPI, vol. 12(5), pages 1-14, March.
    6. Deng, B.C. & Yang, S.Q. & Xie, X.J. & Wang, Y.L. & Pan, W. & Li, Q. & Gong, L.H., 2019. "Thermal performance assessment of cryogenic transfer line with support and multilayer insulation for cryogenic fluid," Applied Energy, Elsevier, vol. 250(C), pages 895-903.
    7. Brey, J.J. & Carazo, A.F. & Brey, R., 2018. "Exploring the marketability of fuel cell electric vehicles in terms of infrastructure and hydrogen costs in Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2893-2899.
    8. Chakraborty, Amitav & Biswas, Srijit & Kakati, Dipankar & Banerjee, Rahul, 2022. "Leveraging hydrogen as the low reactive component in the optimization of the PPCI-RCCI transition regimes in an existing diesel engine under varying injection phasing and reactivity stratification str," Energy, Elsevier, vol. 244(PA).
    9. Scaldaferri, C.A. & Pasa, V.M.D., 2019. "Green diesel production from upgrading of cashew nut shell liquid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 303-313.
    10. Vasu, Anusuiah & Hagos, Ftwi Y. & Noor, M.M. & Mamat, R. & Azmi, W.H. & Abdullah, Abdul A. & Ibrahim, Thamir K., 2017. "Corrosion effect of phase change materials in solar thermal energy storage application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 19-33.
    11. Dixit, Fuhar & Zimmermann, Karl & Alamoudi, Majed & Abkar, Leili & Barbeau, Benoit & Mohseni, Madjid & Kandasubramanian, Balasubramanian & Smith, Kevin, 2022. "Application of MXenes for air purification, gas separation and storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    12. Corzo Santamaría, Teresa & Martin-Bujack, Karin & Portela, Jose & Sáenz-Diez, Rocio, 2022. "Early market efficiency testing among hydrogen players," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 723-742.
    13. Alexandra Kopteva & Leonid Kalimullin & Pavel Tcvetkov & Amilcar Soares, 2021. "Prospects and Obstacles for Green Hydrogen Production in Russia," Energies, MDPI, vol. 14(3), pages 1-21, January.
    14. Johnsson, Filip & Karlsson, Ida & Rootzén, Johan & Ahlbäck, Anders & Gustavsson, Mathias, 2020. "The framing of a sustainable development goals assessment in decarbonizing the construction industry – Avoiding “Greenwashing”," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    15. Trapero, Juan R. & Horcajada, Laura & Linares, Jose J. & Lobato, Justo, 2017. "Is microbial fuel cell technology ready? An economic answer towards industrial commercialization," Applied Energy, Elsevier, vol. 185(P1), pages 698-707.
    16. Mariusz Rząsa & Ewelina Łukasiewicz & Dariusz Wójtowicz, 2021. "Test of a New Low-Speed Compressed Air Engine for Energy Recovery," Energies, MDPI, vol. 14(4), pages 1-15, February.
    17. Liu, Zhao & Chen, Huicui & Zhang, Tong, 2022. "Review on system mitigation strategies for start-stop degradation of automotive proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 327(C).
    18. Charlotte Jarosch & Philipp Jahnke & Johannes Giehl & Jana Himmel, 2022. "Modelling Decentralized Hydrogen Systems: Lessons Learned and Challenges from German Regions," Energies, MDPI, vol. 15(4), pages 1-27, February.
    19. Ali Keyvanfar & Arezou Shafaghat & Nasiru Zakari Muhammad & M. Salim Ferwati, 2018. "Driving Behaviour and Sustainable Mobility—Policies and Approaches Revisited," Sustainability, MDPI, vol. 10(4), pages 1-27, April.
    20. Helder X. Nunes & Diogo L. Silva & Carmen M. Rangel & Alexandra M. F. R. Pinto, 2021. "Rehydrogenation of Sodium Borates to Close the NaBH 4 -H 2 Cycle: A Review," Energies, MDPI, vol. 14(12), pages 1-28, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1184-:d:217417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.