IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i24p4802-d298661.html
   My bibliography  Save this article

A Never-Ending Learning Method for Fault Diagnostics in Energy Systems Operating in Evolving Environments

Author

Listed:
  • Maria Rosaria Termite

    (Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milan, Italy)

  • Piero Baraldi

    (Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milan, Italy)

  • Sameer Al-Dahidi

    (Department of Mechanical and Maintenance Engineering, School of Applied Technical Sciences, German Jordanian University, Amman 11180, Jordan)

  • Luca Bellani

    (Aramis Srl, Via pergolesi 5, 20121 Milano, Italy)

  • Michele Compare

    (Aramis Srl, Via pergolesi 5, 20121 Milano, Italy)

  • Enrico Zio

    (Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milan, Italy
    Aramis Srl, Via pergolesi 5, 20121 Milano, Italy
    MINES ParisTech, PSL Research University, CRC, 06560 Sophia Antipolis, France
    Department of Nuclear Engineering, College of Engineering, Kyung Hee University, Seoul 130-701, Korea)

Abstract

Condition monitoring (CM) in the energy industry is limited by the lack of pre-classified data about the normal and/or abnormal plant states and the continuous evolution of its operational conditions. The objective is to develop a CM model able to: (1) Detect abnormal conditions and classify the type of anomaly; (2) recognize novel plant behaviors; (3) select representative examples of the novel classes for labeling by an expert; (4) automatically update the CM model. A CM model based on the never-ending learning paradigm is developed. It develops a dictionary containing labeled prototypical subsequences of signal values representing normal conditions and anomalies, which is continuously updated by using a dendrogram to identify groups of similar subsequences of novel classes and to select those subsequences to be labelled by an expert. A 1-nearest neighbor classifier is trained to online detect abnormal conditions and classify their types. The proposed CM model is applied to a synthetic case study and a real case study concerning the monitoring of the tank pressure of an aero derivative gas turbine lube oil system. The CM model provides satisfactory performances in terms of classification accuracy, while remarkably reducing the expert efforts for data labeling and model (periodic) updating.

Suggested Citation

  • Maria Rosaria Termite & Piero Baraldi & Sameer Al-Dahidi & Luca Bellani & Michele Compare & Enrico Zio, 2019. "A Never-Ending Learning Method for Fault Diagnostics in Energy Systems Operating in Evolving Environments," Energies, MDPI, vol. 12(24), pages 1-26, December.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4802-:d:298661
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/24/4802/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/24/4802/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peng Guo & Nan Bai, 2011. "Wind Turbine Gearbox Condition Monitoring with AAKR and Moving Window Statistic Methods," Energies, MDPI, vol. 4(11), pages 1-17, November.
    2. Kerman López de Calle & Susana Ferreiro & Constantino Roldán-Paraponiaris & Alain Ulazia, 2019. "A Context-Aware Oil Debris-Based Health Indicator for Wind Turbine Gearbox Condition Monitoring," Energies, MDPI, vol. 12(17), pages 1-19, September.
    3. Lei Fu & Yanding Wei & Sheng Fang & Xiaojun Zhou & Junqiang Lou, 2017. "Condition Monitoring for Roller Bearings of Wind Turbines Based on Health Evaluation under Variable Operating States," Energies, MDPI, vol. 10(10), pages 1-21, October.
    4. Lei Fu & Tiantian Zhu & Kai Zhu & Yiling Yang, 2019. "Condition Monitoring for the Roller Bearings of Wind Turbines under Variable Working Conditions Based on the Fisher Score and Permutation Entropy," Energies, MDPI, vol. 12(16), pages 1-20, August.
    5. Chaowen Zhong & Ke Yan & Yuting Dai & Ning Jin & Bing Lou, 2019. "Energy Efficiency Solutions for Buildings: Automated Fault Diagnosis of Air Handling Units Using Generative Adversarial Networks," Energies, MDPI, vol. 12(3), pages 1-11, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vincenzo Destino & Nicola Pedroni & Roberto Bonifetto & Francesco Di Maio & Laura Savoldi & Enrico Zio, 2021. "Metamodeling and On-Line Clustering for Loss-of-Flow Accident Precursors Identification in a Superconducting Magnet Cryogenic Cooling Circuit," Energies, MDPI, vol. 14(17), pages 1-37, September.
    2. Zhang, Wei-Heng & Qin, Jianjun & Lu, Da-Gang & Liu, Min & Faber, Michael H., 2023. "Quantification of the value of condition monitoring system with time-varying monitoring performance in the context of risk-based inspection," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    3. Maria Rosaria Termite & Piero Baraldi & Sameer Al-Dahidi & Luca Bellani & Michele Compare & Enrico Zio, 2020. "Addendum: Termite, M.R. et al. A Never-Ending Learning Method for Fault Diagnostics in Energy Systems Operating in Evolving Environments. Energies 2019, 12 , 4802," Energies, MDPI, vol. 13(2), pages 1-1, January.
    4. Hu, Yang & Miao, Xuewen & Si, Yong & Pan, Ershun & Zio, Enrico, 2022. "Prognostics and health management: A review from the perspectives of design, development and decision," Reliability Engineering and System Safety, Elsevier, vol. 217(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junshuai Yan & Yongqian Liu & Xiaoying Ren, 2023. "An Early Fault Detection Method for Wind Turbine Main Bearings Based on Self-Attention GRU Network and Binary Segmentation Changepoint Detection Algorithm," Energies, MDPI, vol. 16(10), pages 1-23, May.
    2. Lei Fu & Yiling Yang & Xiaolong Yao & Xufen Jiao & Tiantian Zhu, 2019. "A Regional Photovoltaic Output Prediction Method Based on Hierarchical Clustering and the mRMR Criterion," Energies, MDPI, vol. 12(20), pages 1-23, October.
    3. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    4. Yancai Xiao & Ruolan Dai & Guangjian Zhang & Weijia Chen, 2017. "The Use of an Improved LSSVM and Joint Normalization on Temperature Prediction of Gearbox Output Shaft in DFWT," Energies, MDPI, vol. 10(11), pages 1-13, November.
    5. Ke Yan & Yuting Dai & Meiling Xu & Yuchang Mo, 2019. "Tunnel Surface Settlement Forecasting with Ensemble Learning," Sustainability, MDPI, vol. 12(1), pages 1-11, December.
    6. Xin Wu & Hong Wang & Guoqian Jiang & Ping Xie & Xiaoli Li, 2019. "Monitoring Wind Turbine Gearbox with Echo State Network Modeling and Dynamic Threshold Using SCADA Vibration Data," Energies, MDPI, vol. 12(6), pages 1-19, March.
    7. Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
    8. Saleh Mohammed Shahriar & Erphan A. Bhuiyan & Md. Nahiduzzaman & Mominul Ahsan & Julfikar Haider, 2022. "State of Charge Estimation for Electric Vehicle Battery Management Systems Using the Hybrid Recurrent Learning Approach with Explainable Artificial Intelligence," Energies, MDPI, vol. 15(21), pages 1-26, October.
    9. Yeong Rim Noh & Salman Khalid & Heung Soo Kim & Seung-Kyum Choi, 2023. "Intelligent Fault Diagnosis of Robotic Strain Wave Gear Reducer Using Area-Metric-Based Sampling," Mathematics, MDPI, vol. 11(19), pages 1-22, September.
    10. Miklos Kassai, 2019. "Energy Performance Investigation of a Direct Expansion Ventilation Cooling System with a Heat Wheel," Energies, MDPI, vol. 12(22), pages 1-16, November.
    11. Valentin Belopukhov & Andrey Blinov & Sergey Borovik & Mariya Luchsheva & Farit Muhutdinov & Petr Podlipnov & Aleksey Sazhenkov & Yuriy Sekisov, 2022. "Monitoring Metal Wear Particles of Friction Pairs in the Oil Systems of Gas Turbine Power Plants," Energies, MDPI, vol. 15(13), pages 1-15, July.
    12. Lixiao Cao & Zheng Qian & Hamid Zareipour & David Wood & Ehsan Mollasalehi & Shuangshu Tian & Yan Pei, 2018. "Prediction of Remaining Useful Life of Wind Turbine Bearings under Non-Stationary Operating Conditions," Energies, MDPI, vol. 11(12), pages 1-20, November.
    13. Wang, Ziqi & Liu, Changliang & Yan, Feng, 2022. "Condition monitoring of wind turbine based on incremental learning and multivariate state estimation technique," Renewable Energy, Elsevier, vol. 184(C), pages 343-360.
    14. Junshuai Yan & Yongqian Liu & Xiaoying Ren & Li Li, 2023. "Wind Turbine Gearbox Condition Monitoring Using Hybrid Attentions and Spatio-Temporal BiConvLSTM Network," Energies, MDPI, vol. 16(19), pages 1-22, September.
    15. Abdul Ghani Olabi & Tabbi Wilberforce & Khaled Elsaid & Enas Taha Sayed & Tareq Salameh & Mohammad Ali Abdelkareem & Ahmad Baroutaji, 2021. "A Review on Failure Modes of Wind Turbine Components," Energies, MDPI, vol. 14(17), pages 1-44, August.
    16. Pliego Marugán, Alberto & Peco Chacón, Ana María & García Márquez, Fausto Pedro, 2019. "Reliability analysis of detecting false alarms that employ neural networks: A real case study on wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    17. Gonzalo Gil & Aitor Arnaiz & Mariví Higuero & Francisco Javier Diez & Eduardo Jacob, 2022. "Context-Aware Policy Analysis for Distributed Usage Control," Energies, MDPI, vol. 15(19), pages 1-25, September.
    18. Jannis N. Kahlen & Michael Andres & Albert Moser, 2021. "Improving Machine-Learning Diagnostics with Model-Based Data Augmentation Showcased for a Transformer Fault," Energies, MDPI, vol. 14(20), pages 1-20, October.
    19. Peng Qian & Xiange Tian & Jamil Kanfoud & Joash Lap Yan Lee & Tat-Hean Gan, 2019. "A Novel Condition Monitoring Method of Wind Turbines Based on Long Short-Term Memory Neural Network," Energies, MDPI, vol. 12(18), pages 1-15, September.
    20. Xihui Chen & Aimin Ji & Gang Cheng, 2019. "A Novel Deep Feature Learning Method Based on the Fused-Stacked AEs for Planetary Gear Fault Diagnosis," Energies, MDPI, vol. 12(23), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4802-:d:298661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.