IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i24p4649-d295375.html
   My bibliography  Save this article

Model Predictive Control with Binary Quadratic Programming for the Scheduled Operation of Domestic Refrigerators

Author

Listed:
  • Mohammad Reza Zavvar Sabegh

    (School of Engineering, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK)

  • Chris Bingham

    (School of Engineering, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK)

Abstract

The rapid proliferation of the ‘Internet of Things’ (IoT) now affords the opportunity to schedule the operation of widely distributed domestic refrigerator and freezers to collectively improve energy efficiency and reduce peak power consumption on the electrical grid. To accomplish this, the paper proposes the real-time estimation of the thermal mass of each refrigerator in a network using on-line parameter identification, and the co-ordinated (ON-OFF) scheduling of the refrigerator compressors to maintain their respective temperatures within specified hysteresis bands commensurate with accommodating food safety standards. A custom model predictive control (MPC) scheme is devised using binary quadratic programming to realize the scheduling methodology which is implemented through IoT hardware (based on a NodeMCU). Benefits afforded by the proposed scheme are investigated through experimental trials which show that the co-ordinated operation of domestic refrigerators can i) reduce the peak power consumption as seen from the perspective of the electrical power grid (i.e., peak load levelling), ii) can adaptively control the temperature hysteresis band of individual refrigerators to increase operational efficiency, and iii) contribute to a widely distributed aggregated load shed for demand side response purposes in order to aid grid stability. Importantly, the number of compressor starts per hour for each refrigerator is also bounded as an inherent design feature of the algorithm so as not to operationally overstress the compressors and reduce their lifetime. Experimental trials show that such co-ordinated operation of refrigerators can reduce energy consumption by ~30% whilst also providing peak load levelling, thereby affording benefits to both individual consumers as well as electrical network suppliers.

Suggested Citation

  • Mohammad Reza Zavvar Sabegh & Chris Bingham, 2019. "Model Predictive Control with Binary Quadratic Programming for the Scheduled Operation of Domestic Refrigerators," Energies, MDPI, vol. 12(24), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4649-:d:295375
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/24/4649/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/24/4649/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ibrahim M. Saleh & Andrey Postnikov & Corneliu Arsene & Argyrios C. Zolotas & Chris Bingham & Ronald Bickerton & Simon Pearson, 2018. "Impact of Demand Side Response on a Commercial Retail Refrigeration System," Energies, MDPI, vol. 11(2), pages 1-18, February.
    2. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    3. Edorta Carrascal & Izaskun Garrido & Aitor J. Garrido & José María Sala, 2016. "Optimization of the Heating System Use in Aged Public Buildings via Model Predictive Control," Energies, MDPI, vol. 9(4), pages 1-20, March.
    4. Harrington, Lloyd & Aye, Lu & Fuller, Bob, 2018. "Impact of room temperature on energy consumption of household refrigerators: Lessons from analysis of field and laboratory data," Applied Energy, Elsevier, vol. 211(C), pages 346-357.
    5. Postnikov, A. & Albayati, I.M. & Pearson, S. & Bingham, C. & Bickerton, R. & Zolotas, A., 2019. "Facilitating static firm frequency response with aggregated networks of commercial food refrigeration systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qadeer Ali & Muhammad Jamaluddin Thaheem & Fahim Ullah & Samad M. E. Sepasgozar, 2020. "The Performance Gap in Energy-Efficient Office Buildings: How the Occupants Can Help?," Energies, MDPI, vol. 13(6), pages 1-27, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clara Ceccolini & Roozbeh Sangi, 2022. "Benchmarking Approaches for Assessing the Performance of Building Control Strategies: A Review," Energies, MDPI, vol. 15(4), pages 1-30, February.
    2. Germán Ramos Ruiz & Eva Lucas Segarra & Carlos Fernández Bandera, 2018. "Model Predictive Control Optimization via Genetic Algorithm Using a Detailed Building Energy Model," Energies, MDPI, vol. 12(1), pages 1-18, December.
    3. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    4. Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2022. "Interpretable deep learning models for hourly solar radiation prediction based on graph neural network and attention," Applied Energy, Elsevier, vol. 321(C).
    5. Dong, Zihang & Zhang, Xi & Li, Yijun & Strbac, Goran, 2023. "Values of coordinated residential space heating in demand response provision," Applied Energy, Elsevier, vol. 330(PB).
    6. Pinto, Giuseppe & Deltetto, Davide & Capozzoli, Alfonso, 2021. "Data-driven district energy management with surrogate models and deep reinforcement learning," Applied Energy, Elsevier, vol. 304(C).
    7. Dongsu Kim & Jongman Lee & Sunglok Do & Pedro J. Mago & Kwang Ho Lee & Heejin Cho, 2022. "Energy Modeling and Model Predictive Control for HVAC in Buildings: A Review of Current Research Trends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    8. Lee, Zachary E. & Zhang, K. Max, 2021. "Generalized reinforcement learning for building control using Behavioral Cloning," Applied Energy, Elsevier, vol. 304(C).
    9. Hossieny, Nemat & Shrestha, Som S. & Owusu, Osei A. & Natal, Manuel & Benson, Rick & Desjarlais, Andre, 2019. "Improving the energy efficiency of a refrigerator-freezer through the use of a novel cabinet/door liner based on polylactide biopolymer," Applied Energy, Elsevier, vol. 235(C), pages 1-9.
    10. Parantapa Sawant & Oscar Villegas Mier & Michael Schmidt & Jens Pfafferott, 2021. "Demonstration of Optimal Scheduling for a Building Heat Pump System Using Economic-MPC," Energies, MDPI, vol. 14(23), pages 1-15, November.
    11. Yang, Ting & Zhao, Liyuan & Li, Wei & Wu, Jianzhong & Zomaya, Albert Y., 2021. "Towards healthy and cost-effective indoor environment management in smart homes: A deep reinforcement learning approach," Applied Energy, Elsevier, vol. 300(C).
    12. Mohsen Sharifi & Amin Kouti & Evi Lambie & Yixiao Ma & Maria Fernandez Boneta & Mohammad Haris Shamsi, 2023. "A Comprehensive Framework for Data-Driven Building End-Use Assessment Utilizing Monitored Operational Parameters," Energies, MDPI, vol. 16(20), pages 1-23, October.
    13. Huang, Sen & Lin, Yashen & Chinde, Venkatesh & Ma, Xu & Lian, Jianming, 2021. "Simulation-based performance evaluation of model predictive control for building energy systems," Applied Energy, Elsevier, vol. 281(C).
    14. Raman, Naren Srivaths & Devaprasad, Karthikeya & Chen, Bo & Ingley, Herbert A. & Barooah, Prabir, 2020. "Model predictive control for energy-efficient HVAC operation with humidity and latent heat considerations," Applied Energy, Elsevier, vol. 279(C).
    15. Jiaxi Luo, 2022. "A Bibliometric Review on Artificial Intelligence for Smart Buildings," Sustainability, MDPI, vol. 14(16), pages 1-22, August.
    16. Alice Mugnini & Gianluca Coccia & Fabio Polonara & Alessia Arteconi, 2020. "Performance Assessment of Data-Driven and Physical-Based Models to Predict Building Energy Demand in Model Predictive Controls," Energies, MDPI, vol. 13(12), pages 1-18, June.
    17. Abhinandana Boodi & Karim Beddiar & Yassine Amirat & Mohamed Benbouzid, 2022. "Building Thermal-Network Models: A Comparative Analysis, Recommendations, and Perspectives," Energies, MDPI, vol. 15(4), pages 1-27, February.
    18. Alice Mugnini & Gianluca Coccia & Fabio Polonara & Alessia Arteconi, 2021. "Energy Flexibility as Additional Energy Source in Multi-Energy Systems with District Cooling," Energies, MDPI, vol. 14(2), pages 1-30, January.
    19. Postnikov, A. & Albayati, I.M. & Pearson, S. & Bingham, C. & Bickerton, R. & Zolotas, A., 2019. "Facilitating static firm frequency response with aggregated networks of commercial food refrigeration systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    20. Ahmad Esmaeilzadeh & Brian Deal & Aghil Yousefi-Koma & Mohammad Reza Zakerzadeh, 2022. "How Multi-Criterion Optimized Control Methods Improve Effectiveness of Multi-Zone Building Heating System Upgrading," Energies, MDPI, vol. 15(22), pages 1-27, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4649-:d:295375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.