IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v389y2025ics0306261925004556.html
   My bibliography  Save this article

Optimization of heating curves for heat pumps in operation: Outdoor temperature ranges for energy-efficient heating curve shifts

Author

Listed:
  • Potthoff, Ugne
  • Brudermueller, Tobias
  • Hopf, Konstantin
  • Wortmann, Felix

Abstract

In the light of global sustainability efforts, heat pumps offer environmental benefits, but their complexity and potential misconfigurations often lead to homeowner dissatisfaction due to inaccurate heating and lower-than-expected efficiency. Among the most important and complex settings is the heating curve and yet there are no easy-to-use methods to optimize it after its initial set-up. This study aims to develop ready-to-use guidelines for optimizing the heating curve with energy-efficient adjustments that improve room comfort and prevent suboptimal user changes, all without requiring additional sensors like room thermostats. Based on interpretable linear models, estimated on 3995 air-to-water heat pumps, located in Central Europe, we select the least energy-intensive heating curve shift for each outdoor temperature, needed to meet room thermal comfort. We find that the standard parallel shift of the heating curve is only the optimal approach when the average outdoor temperature is between 2 ∘C and 5 ∘C. Outside this range, the heating curve should be moved at its starting or the endpoint. Simulation shows that by translating user input to the room controller with our proposed changes, 84.42 % of the heating curves can be improved, reducing the share of misconfigured heating curves from 24.01 % to 7.08 %. This leads to an average reduction in yearly energy consumption of 4.02 % and an increase in the seasonal coefficient of performance by 2.59 % on average. By introducing ready-to-use heating curve improvement guidelines, we aim to increase efficiency and confidence in heat pump technology, ensuring its adoption to meet carbon emission targets.

Suggested Citation

  • Potthoff, Ugne & Brudermueller, Tobias & Hopf, Konstantin & Wortmann, Felix, 2025. "Optimization of heating curves for heat pumps in operation: Outdoor temperature ranges for energy-efficient heating curve shifts," Applied Energy, Elsevier, vol. 389(C).
  • Handle: RePEc:eee:appene:v:389:y:2025:i:c:s0306261925004556
    DOI: 10.1016/j.apenergy.2025.125725
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925004556
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125725?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:389:y:2025:i:c:s0306261925004556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.