IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v386y2025ics0306261925002582.html
   My bibliography  Save this article

Protecting residential electrical panels and service through model predictive control: A field study

Author

Listed:
  • Pergantis, Elias N.
  • Reyes Premer, Levi D.
  • Lee, Alex H.
  • Priyadarshan,
  • Liu, Haotian
  • Groll, Eckhard A.
  • Ziviani, Davide
  • Kircher, Kevin J.

Abstract

Residential electrification – replacing fossil-fueled appliances and vehicles with electric machines – can significantly reduce greenhouse gas emissions and air pollution. However, installing electric appliances or vehicle charging in a residential building can sharply increase its current draws. In older housing, high current draws can jeopardize electrical infrastructure, such as circuit breaker panels or electrical service (the wires that connect a building to the distribution grid). Upgrading electrical infrastructure often entails long delays and high costs, so poses a significant barrier to electrification. This paper develops and field-tests a control system that avoids the need for electrical upgrades by maintaining an electrified home’s total current draw within the safe limits of its existing panel and service. In the proposed control architecture, a high-level controller plans device set-points over a rolling prediction horizon, while a low-level controller monitors real-time conditions and ramps down devices if necessary. The control system was tested in an occupied, fully electrified single-family house with code-minimum insulation, an air-to-air heat pump and backup resistance heat for space conditioning, a resistance water heater, and a plug-in hybrid electric vehicle with Level I (1.8 kW) charging. The field tests spanned 31 winter days with outdoor temperatures as low as -20 °C. The control system maintained the whole-home current within the safe limits of electrical panels and service rated at 100 A, a common rating for older houses in North America, by adjusting only the temperature set-points of the heat pump and water heater. Simulations suggest that the same 100 A limit could accommodate a second electric vehicle with Level II (11.5 kW) charging. If codes permit, the proposed control system could allow older homes to safely electrify without upgrading electrical panels or service, saving a typical household on the order of $2,000 to $10,000.

Suggested Citation

  • Pergantis, Elias N. & Reyes Premer, Levi D. & Lee, Alex H. & Priyadarshan, & Liu, Haotian & Groll, Eckhard A. & Ziviani, Davide & Kircher, Kevin J., 2025. "Protecting residential electrical panels and service through model predictive control: A field study," Applied Energy, Elsevier, vol. 386(C).
  • Handle: RePEc:eee:appene:v:386:y:2025:i:c:s0306261925002582
    DOI: 10.1016/j.apenergy.2025.125528
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925002582
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125528?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pergantis, Elias N. & Priyadarshan, & Theeb, Nadah Al & Dhillon, Parveen & Ore, Jonathan P. & Ziviani, Davide & Groll, Eckhard A. & Kircher, Kevin J., 2024. "Field demonstration of predictive heating control for an all-electric house in a cold climate," Applied Energy, Elsevier, vol. 360(C).
    2. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    3. Wang, Xiangwei & Wang, Peng & Huang, Renke & Zhu, Xiuli & Arroyo, Javier & Li, Ning, 2025. "Safe deep reinforcement learning for building energy management," Applied Energy, Elsevier, vol. 377(PA).
    4. Shen, Feifei & Zhao, Liang & Du, Wenli & Zhong, Weimin & Qian, Feng, 2020. "Large-scale industrial energy systems optimization under uncertainty: A data-driven robust optimization approach," Applied Energy, Elsevier, vol. 259(C).
    5. Muhammad Awais & Nadeem Javaid & Khursheed Aurangzeb & Syed Irtaza Haider & Zahoor Ali Khan & Danish Mahmood, 2018. "Towards Effective and Efficient Energy Management of Single Home and a Smart Community Exploiting Heuristic Optimization Algorithms with Critical Peak and Real-Time Pricing Tariffs in Smart Grids," Energies, MDPI, vol. 11(11), pages 1-30, November.
    6. Qiu, Haifeng & Vinod, Ashwin & Lu, Shuai & Gooi, Hoay Beng & Pan, Guangsheng & Zhang, Suhan & Veerasamy, Veerapandiyan, 2023. "Decentralized mixed-integer optimization for robust integrated electricity and heat scheduling," Applied Energy, Elsevier, vol. 350(C).
    7. Brennan D. Less & Núria Casquero-Modrego & Iain S. Walker, 2022. "Home Energy Upgrades as a Pathway to Home Decarbonization in the US: A Literature Review," Energies, MDPI, vol. 15(15), pages 1-26, August.
    8. Gasser, Jan & Cai, Hanmin & Karagiannopoulos, Stavros & Heer, Philipp & Hug, Gabriela, 2021. "Predictive energy management of residential buildings while self-reporting flexibility envelope," Applied Energy, Elsevier, vol. 288(C).
    9. Ma, Jiacheng & Kim, Donghun & Braun, James E. & Horton, W. Travis, 2023. "Development and validation of a dynamic modeling framework for air-source heat pumps under cycling of frosting and reverse-cycle defrosting," Energy, Elsevier, vol. 272(C).
    10. Salpakari, Jyri & Lund, Peter, 2016. "Optimal and rule-based control strategies for energy flexibility in buildings with PV," Applied Energy, Elsevier, vol. 161(C), pages 425-436.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pergantis, Elias N. & Priyadarshan, & Theeb, Nadah Al & Dhillon, Parveen & Ore, Jonathan P. & Ziviani, Davide & Groll, Eckhard A. & Kircher, Kevin J., 2024. "Field demonstration of predictive heating control for an all-electric house in a cold climate," Applied Energy, Elsevier, vol. 360(C).
    2. Clara Ceccolini & Roozbeh Sangi, 2022. "Benchmarking Approaches for Assessing the Performance of Building Control Strategies: A Review," Energies, MDPI, vol. 15(4), pages 1-30, February.
    3. Massimiliano Manfren & Maurizio Sibilla & Lamberto Tronchin, 2021. "Energy Modelling and Analytics in the Built Environment—A Review of Their Role for Energy Transitions in the Construction Sector," Energies, MDPI, vol. 14(3), pages 1-29, January.
    4. Dong, Zihang & Zhang, Xi & Zhang, Linan & Giannelos, Spyros & Strbac, Goran, 2024. "Flexibility enhancement of urban energy systems through coordinated space heating aggregation of numerous buildings," Applied Energy, Elsevier, vol. 374(C).
    5. Montazeri, Mina & Remlinger, Carl & Bejar Haro, Benjamin & Heer, Philipp, 2025. "Fully data-driven and modular building thermal control with physically consistent modeling," Applied Energy, Elsevier, vol. 390(C).
    6. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    7. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    8. Shen, Feifei & Zhao, Liang & Wang, Meihong & Du, Wenli & Qian, Feng, 2022. "Data-driven adaptive robust optimization for energy systems in ethylene plant under demand uncertainty," Applied Energy, Elsevier, vol. 307(C).
    9. Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2022. "Interpretable deep learning models for hourly solar radiation prediction based on graph neural network and attention," Applied Energy, Elsevier, vol. 321(C).
    10. Jiang, Sheng-Long & Wang, Meihong & Bogle, I. David L., 2023. "Plant-wide byproduct gas distribution under uncertainty in iron and steel industry via quantile forecasting and robust optimization," Applied Energy, Elsevier, vol. 350(C).
    11. Yang, Fei & Xia, Xiaohua, 2017. "Techno-economic and environmental optimization of a household photovoltaic-battery hybrid power system within demand side management," Renewable Energy, Elsevier, vol. 108(C), pages 132-143.
    12. Hawks, M.A. & Cho, S., 2024. "Review and analysis of current solutions and trends for zero energy building (ZEB) thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    13. Pothitou, Mary & Hanna, Richard F. & Chalvatzis, Konstantinos J., 2016. "Environmental knowledge, pro-environmental behaviour and energy savings in households: An empirical study," Applied Energy, Elsevier, vol. 184(C), pages 1217-1229.
    14. Young Kwan Ko & Young Dae Ko, 2024. "Efficient Hub-Based Platooning Management Considering the Uncertainty of Information," Mathematics, MDPI, vol. 12(23), pages 1-13, December.
    15. Dong, Zihang & Zhang, Xi & Li, Yijun & Strbac, Goran, 2023. "Values of coordinated residential space heating in demand response provision," Applied Energy, Elsevier, vol. 330(PB).
    16. Vladimir Z. Gjorgievski & Nikolas G. Chatzigeorgiou & Venizelos Venizelou & Georgios C. Christoforidis & George E. Georghiou & Grigoris K. Papagiannis, 2020. "Evaluation of Load Matching Indicators in Residential PV Systems-the Case of Cyprus," Energies, MDPI, vol. 13(8), pages 1-18, April.
    17. Zang, Xingyu & Li, Hangxin & Wang, Shengwei, 2025. "Levelized cost quantification of energy flexibility in high-density cities and evaluation of demand-side technologies for providing grid services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
    18. Finck, Christian & Li, Rongling & Kramer, Rick & Zeiler, Wim, 2018. "Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems," Applied Energy, Elsevier, vol. 209(C), pages 409-425.
    19. Yang, Dan & Peng, Xin & Ye, Zhencheng & Lu, Yusheng & Zhong, Weimin, 2021. "Domain adaptation network with uncertainty modeling and its application to the online energy consumption prediction of ethylene distillation processes," Applied Energy, Elsevier, vol. 303(C).
    20. Joshua M. Pearce & Nelson Sommerfeldt, 2021. "Economics of Grid-Tied Solar Photovoltaic Systems Coupled to Heat Pumps: The Case of Northern Climates of the U.S. and Canada," Energies, MDPI, vol. 14(4), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:386:y:2025:i:c:s0306261925002582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.