IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i24p4607-d294118.html
   My bibliography  Save this article

Indoor Air Quality Assessment: Comparison of Ventilation Scenarios for Retrofitting Classrooms in a Hot Climate

Author

Listed:
  • Carmen María Calama-González

    (Instituto Universitario de Arquitectura y Ciencias de la Construcción, Escuela Técnica Superior de Arquitectura, Universidad de Sevilla, Av. Reina Mercedes 2, 41012 Seville, Spain)

  • Ángel Luis León-Rodríguez

    (Instituto Universitario de Arquitectura y Ciencias de la Construcción, Escuela Técnica Superior de Arquitectura, Universidad de Sevilla, Av. Reina Mercedes 2, 41012 Seville, Spain)

  • Rafael Suárez

    (Instituto Universitario de Arquitectura y Ciencias de la Construcción, Escuela Técnica Superior de Arquitectura, Universidad de Sevilla, Av. Reina Mercedes 2, 41012 Seville, Spain)

Abstract

Current energy efficiency policies in buildings foster the promotion of energy retrofitting of the existing stock. In southern Spain, the most extensive public sector is that of educational buildings, which is especially subject to significant internal loads due to high occupancy. A large fraction of the energy retrofit strategies conducted to date have focused on energy aspects and indoor thermal comfort, repeatedly disregarding indoor air quality criteria. This research assesses indoor air quality in a school located in the Mediterranean area, with the objective of promoting different ventilation scenarios, based on occupancy patterns and carbon dioxide levels monitored on site. Results show that manual ventilation cannot guarantee minimum indoor quality levels following current standards. A constant ventilation based on CO 2 levels allows 15% more thermal comfort hours a year to be reached, compared to CO 2 -based optimized demand-controlled ventilation. Nevertheless, the latter ensures 35% annual energy savings, compared to a constant CO 2 -based ventilation, and 37% more annual energy savings over that of a constant ventilation rate of outdoor air per person.

Suggested Citation

  • Carmen María Calama-González & Ángel Luis León-Rodríguez & Rafael Suárez, 2019. "Indoor Air Quality Assessment: Comparison of Ventilation Scenarios for Retrofitting Classrooms in a Hot Climate," Energies, MDPI, vol. 12(24), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4607-:d:294118
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/24/4607/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/24/4607/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. van Hooff, T. & Blocken, B. & Timmermans, H.J.P. & Hensen, J.L.M., 2016. "Analysis of the predicted effect of passive climate adaptation measures on energy demand for cooling and heating in a residential building," Energy, Elsevier, vol. 94(C), pages 811-820.
    2. Gil-Baez, Maite & Padura, Ángela Barrios & Huelva, Marta Molina, 2019. "Passive actions in the building envelope to enhance sustainability of schools in a Mediterranean climate," Energy, Elsevier, vol. 167(C), pages 144-158.
    3. Homod, Raad Z. & Sahari, Khairul Salleh Mohamed & Almurib, Haider A.F., 2014. "Energy saving by integrated control of natural ventilation and HVAC systems using model guide for comparison," Renewable Energy, Elsevier, vol. 71(C), pages 639-650.
    4. Wang, Yang & Zhao, Fu-Yun & Kuckelkorn, Jens & Liu, Di & Liu, Li-Qun & Pan, Xiao-Chuan, 2014. "Cooling energy efficiency and classroom air environment of a school building operated by the heat recovery air conditioning unit," Energy, Elsevier, vol. 64(C), pages 991-1001.
    5. Schibuola, Luigi & Scarpa, Massimiliano & Tambani, Chiara, 2018. "CO2 based ventilation control in energy retrofit: An experimental assessment," Energy, Elsevier, vol. 143(C), pages 606-614.
    6. da Graça Carvalho, Maria, 2012. "EU energy and climate change strategy," Energy, Elsevier, vol. 40(1), pages 19-22.
    7. Carmen María Calama-González & Rafael Suárez & Ángel Luis León-Rodríguez & Simone Ferrari, 2019. "Assessment of Indoor Environmental Quality for Retrofitting Classrooms with An Egg-Crate Shading Device in A Hot Climate," Sustainability, MDPI, vol. 11(4), pages 1-21, February.
    8. Lizana, Jesus & Serrano-Jimenez, Antonio & Ortiz, Carlos & Becerra, Jose A. & Chacartegui, Ricardo, 2018. "Energy assessment method towards low-carbon energy schools," Energy, Elsevier, vol. 159(C), pages 310-326.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gil-Baez, Maite & Barrios-Padura, Ángela & Molina-Huelva, Marta & Chacartegui, R., 2017. "Natural ventilation systems in 21st-century for near zero energy school buildings," Energy, Elsevier, vol. 137(C), pages 1186-1200.
    2. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    3. Cui, X. & Islam, M.R. & Chua, K.J., 2019. "Experimental study and energy saving potential analysis of a hybrid air treatment cooling system in tropical climates," Energy, Elsevier, vol. 172(C), pages 1016-1026.
    4. Bottino-Leone, Dario & Larcher, Marco & Herrera-Avellanosa, Daniel & Haas, Franziska & Troi, Alexandra, 2019. "Evaluation of natural-based internal insulation systems in historic buildings through a holistic approach," Energy, Elsevier, vol. 181(C), pages 521-531.
    5. Galatioto, A. & Ciulla, G. & Ricciu, R., 2017. "An overview of energy retrofit actions feasibility on Italian historical buildings," Energy, Elsevier, vol. 137(C), pages 991-1000.
    6. Gil-Baez, Maite & Padura, Ángela Barrios & Huelva, Marta Molina, 2019. "Passive actions in the building envelope to enhance sustainability of schools in a Mediterranean climate," Energy, Elsevier, vol. 167(C), pages 144-158.
    7. Kritana Prueksakorn & Cheng-Xu Piao & Hyunchul Ha & Taehyeung Kim, 2015. "Computational and Experimental Investigation for an Optimal Design of Industrial Windows to Allow Natural Ventilation during Wind-Driven Rain," Sustainability, MDPI, vol. 7(8), pages 1-22, August.
    8. Homod, Raad Z., 2018. "Analysis and optimization of HVAC control systems based on energy and performance considerations for smart buildings," Renewable Energy, Elsevier, vol. 126(C), pages 49-64.
    9. Moroni, Stefano & Antoniucci, Valentina & Bisello, Adriano, 2016. "Energy sprawl, land taking and distributed generation: towards a multi-layered density," Energy Policy, Elsevier, vol. 98(C), pages 266-273.
    10. Kim, Yeong Jae & Wilson, Charlie, 2019. "Analysing energy innovation portfolios from a systemic perspective," Energy Policy, Elsevier, vol. 134(C).
    11. Moreno, Blanca & López, Ana J. & García-Álvarez, María Teresa, 2012. "The electricity prices in the European Union. The role of renewable energies and regulatory electric market reforms," Energy, Elsevier, vol. 48(1), pages 307-313.
    12. Vincenzo Bianco & Annalisa Marchitto & Federico Scarpa & Luca A. Tagliafico, 2020. "Forecasting Energy Consumption in the EU Residential Sector," IJERPH, MDPI, vol. 17(7), pages 1-15, March.
    13. Wang, Lan & Lee, Eric W.M. & Hussian, Syed Asad & Yuen, Anthony Chun Yin & Feng, Wei, 2021. "Quantitative impact analysis of driving factors on annual residential building energy end-use combining machine learning and stochastic methods," Applied Energy, Elsevier, vol. 299(C).
    14. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2018. "Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium," Applied Energy, Elsevier, vol. 228(C), pages 852-872.
    15. Josef Navrátil & Stanislav Martinát & Tomáš Krejčí & Petr Klusáček & Richard J. Hewitt, 2021. "Conversion of Post-Socialist Agricultural Premises as a Chance for Renewable Energy Production. Photovoltaics or Biogas Plants?," Energies, MDPI, vol. 14(21), pages 1-21, November.
    16. Homod, Raad Z. & Gaeid, Khalaf S. & Dawood, Suroor M. & Hatami, Alireza & Sahari, Khairul S., 2020. "Evaluation of energy-saving potential for optimal time response of HVAC control system in smart buildings," Applied Energy, Elsevier, vol. 271(C).
    17. Xiaoliang Wang & Bo Lei & Haiquan Bi & Tao Yu, 2019. "Study on the Thermal Performance of a Hybrid Heat Collecting Facade Used for Passive Solar Buildings in Cold Region," Energies, MDPI, vol. 12(6), pages 1-22, March.
    18. Bertoldi, Paolo & Mosconi, Rocco, 2020. "Do energy efficiency policies save energy? A new approach based on energy policy indicators (in the EU Member States)," Energy Policy, Elsevier, vol. 139(C).
    19. Su, Meirong & Pauleit, Stephan & Yin, Xuemei & Zheng, Ying & Chen, Shaoqing & Xu, Chao, 2016. "Greenhouse gas emission accounting for EU member states from 1991 to 2012," Applied Energy, Elsevier, vol. 184(C), pages 759-768.
    20. Roman Vavrek & Jana Chovancová, 2020. "Energy Performance of the European Union Countries in Terms of Reaching the European Energy Union Objectives," Energies, MDPI, vol. 13(20), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4607-:d:294118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.