IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i23p4529-d291738.html
   My bibliography  Save this article

Dual Solutions and Stability Analysis of Micropolar Nanofluid Flow with Slip Effect on Stretching/Shrinking Surfaces

Author

Listed:
  • Sumera Dero

    (School of Quantitative Sciences, Universiti Utara Malaysia, Sintok 06010, Kedah, Malaysia
    IICT, University of Sindh, Jamshoro 76080, Pakistan)

  • Azizah Mohd Rohni

    (School of Quantitative Sciences, Universiti Utara Malaysia, Sintok 06010, Kedah, Malaysia)

  • Azizan Saaban

    (School of Quantitative Sciences, Universiti Utara Malaysia, Sintok 06010, Kedah, Malaysia)

  • Ilyas Khan

    (Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City 72915, Vietnam)

Abstract

The purpose of the present paper is to investigate the micropolar nanofluid flow on permeable stretching and shrinking surfaces with the velocity, thermal and concentration slip effects. Furthermore, the thermal radiation effect has also been considered. Boundary layer momentum, angular velocity, heat and mass transfer equations are converted to non-linear ordinary differential equations (ODEs). Then, the obtained ODEs are solved by applying the shooting method and in the results, the dual solutions are obtained in the certain ranges of pertinent parameters in both cases of shrinking and stretching surfaces. Due to the presence of the dual solutions, stability analysis is done and it was found that the first solution is stable and physically feasible. The results are also compared with previously published literature and found to be in excellent agreement. Moreover, the obtained results reveal the angular velocity increases in the first solution when the value of micropolar parameter increases. The velocity of nanofluid flow decreases in the first solution as the velocity slip parameter increases, whereas the temperature profiles increase in both solutions when thermal radiation, Brownian motion and the thermophoresis parameters are increased. Concentration profile increases by increasing N t and decreases by increasing N b .

Suggested Citation

  • Sumera Dero & Azizah Mohd Rohni & Azizan Saaban & Ilyas Khan, 2019. "Dual Solutions and Stability Analysis of Micropolar Nanofluid Flow with Slip Effect on Stretching/Shrinking Surfaces," Energies, MDPI, vol. 12(23), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4529-:d:291738
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/23/4529/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/23/4529/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alsarraf, Jalal & Moradikazerouni, Alireza & Shahsavar, Amin & Afrand, Masoud & Salehipour, Hamzeh & Tran, Minh Duc, 2019. "Hydrothermal analysis of turbulent boehmite alumina nanofluid flow with different nanoparticle shapes in a minichannel heat exchanger using two-phase mixture model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 275-288.
    2. Siti Nur Alwani Salleh & Norfifah Bachok & Norihan Md Arifin & Fadzilah Md Ali & Ioan Pop, 2018. "Magnetohydrodynamics Flow Past a Moving Vertical Thin Needle in a Nanofluid with Stability Analysis," Energies, MDPI, vol. 11(12), pages 1-15, November.
    3. Moradikazerouni, Alireza & Hajizadeh, Ahmad & Safaei, Mohammad Reza & Afrand, Masoud & Yarmand, Hooman & Zulkifli, Nurin Wahidah Binti Mohd, 2019. "Assessment of thermal conductivity enhancement of nano-antifreeze containing single-walled carbon nanotubes: Optimal artificial neural network and curve-fitting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 138-145.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhixiong & Ashkezari, Abbas Zarenezhad & Tlili, Iskander, 2020. "Applying artificial neural network and curve fitting method to predict the viscosity of SAE50/MWCNTs-TiO2 hybrid nanolubricant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    2. Sarafraz, M.M. & Tlili, I. & Tian, Zhe & Bakouri, Mohsen & Safaei, Mohammad Reza, 2019. "Smart optimization of a thermosyphon heat pipe for an evacuated tube solar collector using response surface methodology (RSM)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    3. Ma, Yulin & Shahsavar, Amin & Moradi, Iman & Rostami, Sara & Moradikazerouni, Alireza & Yarmand, Hooman & Zulkifli, Nurin Wahidah Binti Mohd, 2021. "Using finite volume method for simulating the natural convective heat transfer of nano-fluid flow inside an inclined enclosure with conductive walls in the presence of a constant temperature heat sour," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    4. Ghazvini, Mahyar & Maddah, Heydar & Peymanfar, Reza & Ahmadi, Mohammad Hossein & Kumar, Ravinder, 2020. "Experimental evaluation and artificial neural network modeling of thermal conductivity of water based nanofluid containing magnetic copper nanoparticles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    5. Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    6. Zeeshan & Attaullah & N. Ameer Ahammad & Nehad Ali Shah & Jae Dong Chung, 2023. "A Numerical Framework for Entropy Generation Using Second-Order Nanofluid Thin Film Flow over an Expanding Sheet: Error Estimation and Stability Analysis," Mathematics, MDPI, vol. 11(5), pages 1-26, February.
    7. Iskandar Waini & Anuar Ishak & Ioan Pop, 2020. "Hybrid Nanofluid Flow Past a Permeable Moving Thin Needle," Mathematics, MDPI, vol. 8(4), pages 1-18, April.
    8. Seyedeh Farzaneh Mousavi Motlagh & Ali Sohani & Mohammad Djavad Saghafi & Hoseyn Sayyaadi & Benedetto Nastasi, 2021. "The Road to Developing Economically Feasible Plans for Green, Comfortable and Energy Efficient Buildings," Energies, MDPI, vol. 14(3), pages 1-30, January.
    9. Moghadam, Iman Panahi & Afrand, Masoud & Hamad, Samir M. & Barzinjy, Azeez A. & Talebizadehsardari, Pouyan, 2020. "Curve-fitting on experimental data for predicting the thermal-conductivity of a new generated hybrid nanofluid of graphene oxide-titanium oxide/water," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    10. Jamei, Mehdi & Ahmadianfar, Iman, 2020. "A rigorous model for prediction of viscosity of oil-based hybrid nanofluids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    11. Roy Setiawan & Reza Daneshfar & Omid Rezvanjou & Siavash Ashoori & Maryam Naseri, 2021. "Surface tension of binary mixtures containing environmentally friendly ionic liquids: Insights from artificial intelligence," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17606-17627, December.
    12. Jiang, Ping & Liu, Zhenkun & Niu, Xinsong & Zhang, Lifang, 2021. "A combined forecasting system based on statistical method, artificial neural networks, and deep learning methods for short-term wind speed forecasting," Energy, Elsevier, vol. 217(C).
    13. Tian, Zhe & Rostami, Sara & Taherialekouhi, Roozbeh & Karimipour, Arash & Moradikazerouni, Alireza & Yarmand, Hooman & Zulkifli, Nurin Wahidah Binti Mohd, 2020. "Prediction of rheological behavior of a new hybrid nanofluid consists of copper oxide and multi wall carbon nanotubes suspended in a mixture of water and ethylene glycol using curve-fitting on experim," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    14. Shafee, Ahmad & Arabkoohsar, A. & Sheikholeslami, M. & Jafaryar, M. & Ayani, M. & Nguyen-Thoi, Trung & Basha, D. Baba & Tlili, I. & Li, Zhixiong, 2020. "Numerical simulation for turbulent flow in a tube with combined swirl flow device considering nanofluid exergy loss," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    15. A. J. Chamkha & A. M. Rashad & E. R. EL-Zahar & Hamed A. EL-Mky, 2019. "Analytical and Numerical Investigation of Fe 3 O 4 –Water Nanofluid Flow over a Moveable Plane in a Parallel Stream with High Suction," Energies, MDPI, vol. 12(1), pages 1-18, January.
    16. Anna Kraszewska & Janusz Donizak, 2021. "An Analysis of a Laminar-Turbulent Transition and Thermal Plumes Behavior in a Paramagnetic Fluid Subjected to an External Magnetic Field," Energies, MDPI, vol. 14(23), pages 1-23, November.
    17. Hemmat Esfe, Mohammad & Esfandeh, Saeed, 2020. "The statistical investigation of multi-grade oil based nanofluids: Enriched by MWCNT and ZnO nanoparticles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    18. Peng, Yeping & Khaled, Usama & Al-Rashed, Abdullah A.A.A. & Meer, Rashid & Goodarzi, Marjan & Sarafraz, M.M., 2020. "Potential application of Response Surface Methodology (RSM) for the prediction and optimization of thermal conductivity of aqueous CuO (II) nanofluid: A statistical approach and experimental validatio," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    19. Song, Ying-Qing & Hamid, Aamir & Khan, M. Ijaz & Gowda, R.J. Punith & Kumar, R. Naveen & Prasannakumara, B.C. & Khan, Sami Ullah & Khan, M. Imran & Malik, M.Y., 2021. "Solar energy aspects of gyrotactic mixed bioconvection flow of nanofluid past a vertical thin moving needle influenced by variable Prandtl number," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    20. Arani, Ali Akbar Abbasian & Alirezaie, Ali & Kamyab, Mohammad Hassan & Motallebi, Sayyid Majid, 2020. "Statistical analysis of enriched water heat transfer with various sizes of MgO nanoparticles using artificial neural networks modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4529-:d:291738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.