IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v192y2025ics0960077925000347.html
   My bibliography  Save this article

Role of electroosmotic and Darcy-Forchheimer Law on magnetohydrodynamic Williamson hybrid nanofluid flow over a moving thin needle

Author

Listed:
  • Nadeem, Muhammad
  • Franco, Admilson T.
  • Siddique, Imran
  • Garcia-Blanco, Yamid J.
  • Quitian-Ardila, Luis H.
  • Khan, Rizwan

Abstract

This study examines the complex interactions between several parameters, such as electro-osmosis force, activation energy, and Darcy-Forchheimer Law, in the magnetohydrodynamic (MHD) Williamson AA7072+AA7075/SA hybrid nanofluid flow over a moving thin needle as alloy nanoparticles AA7075 and AA7072 are inserted into host fluid, sodium alginate (SA). Further, the significance of viscous dissipation, nonlinear thermal radiation, heat absorption/generation, and thermal and concentration convective boundary conditions have been considered to optimize heat and mass transmission. Our approach involves formulating mathematical equations that are then converted into a group of partial differential equations to simulate these intricate processes. These equations become ordinary differential equations through a similarity renovation, and we solve the resulting boundary value problem numerically, implementing the fourth-order accurate BVP4C method. An analysis has been conducted using graphics and tabular to show how many critical physical flow parameters, including temperature ratio, nanoparticle volume fraction, Weissenberg number, magnetic field, and electro-osmotic parameters, affect the mass transfer rate, drag force, flow rate, heat transfer rate, heat, and mass fluxes. The BVP4C solution exhibits absolute compatibility with the artificial neural network (ANN) solution when the numerical solutions are compared to ANN. Fluid temperature rises in response to electro-osmotic parameters, viscoelastic parameters, magnetic field, and nanoparticle volume percentage, but fluid velocity drops, according to the study's prior observations. Moreover, as the activation energy and volume percentage of nanoparticles change, the fluid concentration increases. Drag force and heat transfer rate diminish with increasing electro-osmotic impact.

Suggested Citation

  • Nadeem, Muhammad & Franco, Admilson T. & Siddique, Imran & Garcia-Blanco, Yamid J. & Quitian-Ardila, Luis H. & Khan, Rizwan, 2025. "Role of electroosmotic and Darcy-Forchheimer Law on magnetohydrodynamic Williamson hybrid nanofluid flow over a moving thin needle," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000347
    DOI: 10.1016/j.chaos.2025.116021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925000347
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kirusakthika, S. & Priya, S. & Hakeem, A.K. Abdul & Ganga, B., 2024. "MHD slip effects on (50:50) hybrid nanofluid flow over a moving thin inclined needle with consequences of non-linear thermal radiation, viscous dissipation, and inclined Lorentz force," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 222(C), pages 50-66.
    2. Nur Syahirah Wahid & Norihan Md Arifin & Najiyah Safwa Khashi’ie & Ioan Pop, 2020. "Hybrid Nanofluid Slip Flow over an Exponentially Stretching/Shrinking Permeable Sheet with Heat Generation," Mathematics, MDPI, vol. 9(1), pages 1-20, December.
    3. Siti Nur Alwani Salleh & Norfifah Bachok & Norihan Md Arifin & Fadzilah Md Ali & Ioan Pop, 2018. "Magnetohydrodynamics Flow Past a Moving Vertical Thin Needle in a Nanofluid with Stability Analysis," Energies, MDPI, vol. 11(12), pages 1-15, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iskandar Waini & Anuar Ishak & Ioan Pop, 2020. "Hybrid Nanofluid Flow Past a Permeable Moving Thin Needle," Mathematics, MDPI, vol. 8(4), pages 1-18, April.
    2. A. J. Chamkha & A. M. Rashad & E. R. EL-Zahar & Hamed A. EL-Mky, 2019. "Analytical and Numerical Investigation of Fe 3 O 4 –Water Nanofluid Flow over a Moveable Plane in a Parallel Stream with High Suction," Energies, MDPI, vol. 12(1), pages 1-18, January.
    3. Anna Kraszewska & Janusz Donizak, 2021. "An Analysis of a Laminar-Turbulent Transition and Thermal Plumes Behavior in a Paramagnetic Fluid Subjected to an External Magnetic Field," Energies, MDPI, vol. 14(23), pages 1-23, November.
    4. Song, Ying-Qing & Hamid, Aamir & Khan, M. Ijaz & Gowda, R.J. Punith & Kumar, R. Naveen & Prasannakumara, B.C. & Khan, Sami Ullah & Khan, M. Imran & Malik, M.Y., 2021. "Solar energy aspects of gyrotactic mixed bioconvection flow of nanofluid past a vertical thin moving needle influenced by variable Prandtl number," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    5. Nur Adilah Liyana Aladdin & Norfifah Bachok, 2021. "Duality Solutions in Hydromagnetic Flow of SWCNT-MWCNT/Water Hybrid Nanofluid over Vertical Moving Slender Needle," Mathematics, MDPI, vol. 9(22), pages 1-17, November.
    6. Sumera Dero & Azizah Mohd Rohni & Azizan Saaban & Ilyas Khan, 2019. "Dual Solutions and Stability Analysis of Micropolar Nanofluid Flow with Slip Effect on Stretching/Shrinking Surfaces," Energies, MDPI, vol. 12(23), pages 1-20, November.
    7. Rusya Iryanti Yahaya & Norihan Md Arifin & Ioan Pop & Fadzilah Md Ali & Siti Suzilliana Putri Mohamed Isa, 2022. "Steady Flow of Burgers’ Nanofluids over a Permeable Stretching/Shrinking Surface with Heat Source/Sink," Mathematics, MDPI, vol. 10(9), pages 1-22, May.
    8. Najiyah Safwa Khashi’ie & Norihan Md Arifin & Ioan Pop, 2020. "Mixed Convective Stagnation Point Flow towards a Vertical Riga Plate in Hybrid Cu-Al 2 O 3 /Water Nanofluid," Mathematics, MDPI, vol. 8(6), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.