IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i22p4295-d285832.html
   My bibliography  Save this article

Preliminary Study on the Performance Evaluation of a Light Shelf Based on Reflector Curvature

Author

Listed:
  • Heangwoo Lee

    (College of Design, Sangmyung University, Cheonan-si, Chungcheongnam-do 31066, Korea)

  • Janghoo Seo

    (School of Architecture, Kookmin University, Seoul 02707, Korea)

  • Chang-ho Choi

    (Department of Architectural Engineering, Kwangwoon University, Seoul 01886, Korea)

Abstract

The consumption of lighting energy in buildings continues to rise, and many studies are being conducted to address this problem. As part of such initiatives, research is being performed on light shelves, which are natural lighting systems. However, most prior studies focused on variables for operating flat reflectors and light shelves. This study aims to evaluate the performance of curved light shelves to prove their effectiveness and derive optimal specifications for them. The following conclusions were reached. The optimal light shelf angles for a flat light shelf were found to be 30°, 20°, and 20° for the summer, mid-season, and winter, respectively, and accordingly, a movable light shelf system would be suitable for all three seasons. The optimal light shelf angles for a movable curved light shelf with an arc angle of 60° were found to be 30°, 30°, and 10° for the summer, mid-season, and winter, respectively. The optimal light shelf angle and arc angle for a fixed-type curved light shelf were found to be 20° and 60°, respectively. A fixed-type curved light shelf designed according to these optimal specifications can reduce energy consumption by 3.6% in comparison to a movable flat light shelf. Consequently, the curved light shelf is considered an effective system, and additional studies analyzing various other factors should be carried out in the future.

Suggested Citation

  • Heangwoo Lee & Janghoo Seo & Chang-ho Choi, 2019. "Preliminary Study on the Performance Evaluation of a Light Shelf Based on Reflector Curvature," Energies, MDPI, vol. 12(22), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4295-:d:285832
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/22/4295/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/22/4295/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heangwoo Lee & Janghoo Seo, 2018. "Development of Window-Mounted Air Cap Roller Module," Energies, MDPI, vol. 11(7), pages 1-14, July.
    2. Nikolaos Kampelis & Nikolaos Sifakis & Dionysia Kolokotsa & Konstantinos Gobakis & Konstantinos Kalaitzakis & Daniela Isidori & Cristina Cristalli, 2019. "HVAC Optimization Genetic Algorithm for Industrial Near-Zero-Energy Building Demand Response," Energies, MDPI, vol. 12(11), pages 1-23, June.
    3. Heangwoo Lee & Chang-ho Choi & Minki Sung, 2018. "Development of a Dimming Lighting Control System Using General Illumination and Location-Awareness Technology," Energies, MDPI, vol. 11(11), pages 1-19, November.
    4. Won Jun Choi & Hong Jin Joo & Jae-Wan Park & Sang-kyun Kim & Jae-Bum Lee, 2019. "Power Generation Performance of Building-Integrated Photovoltaic Systems in a Zero Energy Building," Energies, MDPI, vol. 12(13), pages 1-18, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heangwoo Lee & Janghoo Seo, 2020. "Performance Evaluation of External Light Shelves by Applying a Prism Sheet," Energies, MDPI, vol. 13(18), pages 1-14, September.
    2. Heangwoo Lee, 2020. "A Basic Study on the Performance Evaluation of a Movable Light Shelf with a Rolling Reflector That Can Change Reflectivity to Improve the Visual Environment," IJERPH, MDPI, vol. 17(22), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heangwoo Lee & Chang-ho Choi & Minki Sung, 2018. "Development of a Dimming Lighting Control System Using General Illumination and Location-Awareness Technology," Energies, MDPI, vol. 11(11), pages 1-19, November.
    2. Dongsu Kim & Jongman Lee & Sunglok Do & Pedro J. Mago & Kwang Ho Lee & Heejin Cho, 2022. "Energy Modeling and Model Predictive Control for HVAC in Buildings: A Review of Current Research Trends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    3. Szymon Firląg, 2019. "Cost-Optimal Plus Energy Building in a Cold Climate," Energies, MDPI, vol. 12(20), pages 1-20, October.
    4. da Fonseca, André L.A. & Chvatal, Karin M.S. & Fernandes, Ricardo A.S., 2021. "Thermal comfort maintenance in demand response programs: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Krzysztof Wąs & Jan Radoń & Agnieszka Sadłowska-Sałęga, 2022. "Thermal Comfort—Case Study in a Lightweight Passive House," Energies, MDPI, vol. 15(13), pages 1-21, June.
    6. Sahraei, Mohammad Ali & Duman, Hakan & Çodur, Muhammed Yasin & Eyduran, Ecevit, 2021. "Prediction of transportation energy demand: Multivariate Adaptive Regression Splines," Energy, Elsevier, vol. 224(C).
    7. Heangwoo Lee & Janghoo Seo, 2020. "Performance Evaluation of External Light Shelves by Applying a Prism Sheet," Energies, MDPI, vol. 13(18), pages 1-14, September.
    8. Bartosz Radomski & Tomasz Mróz, 2021. "The Methodology for Designing Residential Buildings with a Positive Energy Balance—Case Study," Energies, MDPI, vol. 14(16), pages 1-19, August.
    9. Krzysztof Wąs & Jan Radoń & Agnieszka Sadłowska-Sałęga, 2020. "Maintenance of Passive House Standard in the Light of Long-Term Study on Energy Use in a Prefabricated Lightweight Passive House in Central Europe," Energies, MDPI, vol. 13(11), pages 1-22, June.
    10. Bartosz Radomski & Tomasz Mróz, 2021. "The Methodology for Designing Residential Buildings with a Positive Energy Balance—General Approach," Energies, MDPI, vol. 14(15), pages 1-16, August.
    11. Camille Pajot & Nils Artiges & Benoit Delinchant & Simon Rouchier & Frédéric Wurtz & Yves Maréchal, 2019. "An Approach to Study District Thermal Flexibility Using Generative Modeling from Existing Data," Energies, MDPI, vol. 12(19), pages 1-22, September.
    12. Giulio Mangherini & Valentina Diolaiti & Paolo Bernardoni & Alfredo Andreoli & Donato Vincenzi, 2023. "Review of Façade Photovoltaic Solutions for Less Energy-Hungry Buildings," Energies, MDPI, vol. 16(19), pages 1-35, September.
    13. Wangqi Xiong & Jiandong Wang, 2020. "Minimizing Power Consumption of an Experimental HVAC System Based on Parallel Grid Searching," Energies, MDPI, vol. 13(8), pages 1-18, April.
    14. Ahmad, Ashfaq & Khan, Jamil Yusuf, 2020. "Real-Time Load Scheduling, Energy Storage Control and Comfort Management for Grid-Connected Solar Integrated Smart Buildings," Applied Energy, Elsevier, vol. 259(C).
    15. Pillai, Dhanup S. & Shabunko, Veronika & Krishna, Amal, 2022. "A comprehensive review on building integrated photovoltaic systems: Emphasis to technological advancements, outdoor testing, and predictive maintenance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4295-:d:285832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.