IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i20p3997-d278696.html
   My bibliography  Save this article

Experimental Study of the Influence of Natural Gas Constituents on CO Emission from Chinese Gas Cooker

Author

Listed:
  • Pengfei Duan

    (Gas Institute, School of Mechanical Engineering, Tongji University, Shanghai 201804, China)

  • Chaokui Qin

    (Gas Institute, School of Mechanical Engineering, Tongji University, Shanghai 201804, China)

  • Zhiguang Chen

    (Gas Institute, School of Mechanical Engineering, Tongji University, Shanghai 201804, China)

Abstract

In China, it has become a more common practice to introduce natural gases from different sources into the same distribution system to improve supply security and reliability. Variable gas constituents may cause a negative impact on the performance of domestic gas appliances. This paper aims to study the CO emission of a Chinese gas cooker under different constituents of natural gas. A typical Chinese gas cooker with two burners, each of which has a nominal heat input of 3.8 kW, was selected. One of the burners was modified to a forced-mixed mode to replace primary air injection. Within operational ranges corresponding to the permissible Wobbe index—namely, primary air coefficients and heat inputs—the equivalence between original gas and the CH 4 /C 3 H 8 /N 2 three-component mixture in terms of CO emission was experimentally validated. Then, different three-component mixtures were input into the other unmodified burner, which operates under injected primary air, to investigate how the CO emission changed with different gas constituents. It was found that the CO emission of a natural gas and a CH 4 /C 3 H 8 /N 2 three-component mixture, in terms of CO emission, were equivalent. The combination of the two indexes, W and PN , can describe the CO emission from a gas cooker accurately. By means of a three-component mixture, the empirical formula, which can correlate CO and the gas property parameters, was proposed. A set of equal-CO lines was revealed for a given initial primary air adjustment. Finally, a feasible approach to manage gas quality management in China was put forward, and the conclusion can help control the CO emission of gas cookers and improve indoor air quality.

Suggested Citation

  • Pengfei Duan & Chaokui Qin & Zhiguang Chen, 2019. "Experimental Study of the Influence of Natural Gas Constituents on CO Emission from Chinese Gas Cooker," Energies, MDPI, vol. 12(20), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3997-:d:278696
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/20/3997/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/20/3997/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, H.B. & Wong, T.T. & Leung, C.W. & Probert, S.D., 2006. "Thermal performances and CO emissions of gas-fired cooker-top burners," Applied Energy, Elsevier, vol. 83(12), pages 1326-1338, December.
    2. Karavalakis, Georgios & Hajbabaei, Maryam & Durbin, Thomas D. & Johnson, Kent C. & Zheng, Zhongqing & Miller, Wayne J., 2013. "The effect of natural gas composition on the regulated emissions, gaseous toxic pollutants, and ultrafine particle number emissions from a refuse hauler vehicle," Energy, Elsevier, vol. 50(C), pages 280-291.
    3. Hajbabaei, Maryam & Karavalakis, Georgios & Johnson, Kent C. & Lee, Linda & Durbin, Thomas D., 2013. "Impact of natural gas fuel composition on criteria, toxic, and particle emissions from transit buses equipped with lean burn and stoichiometric engines," Energy, Elsevier, vol. 62(C), pages 425-434.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barouch Giechaskiel, 2018. "Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory," IJERPH, MDPI, vol. 15(2), pages 1-24, February.
    2. Kakaee, Amir-Hasan & Paykani, Amin & Ghajar, Mostafa, 2014. "The influence of fuel composition on the combustion and emission characteristics of natural gas fueled engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 64-78.
    3. Anderson, Larry G., 2015. "Effects of using renewable fuels on vehicle emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 162-172.
    4. Chen, Zheng & Zhang, Fan & Xu, Boya & Zhang, Quanchang & Liu, Jingping, 2017. "Influence of methane content on a LNG heavy-duty engine with high compression ratio," Energy, Elsevier, vol. 128(C), pages 329-336.
    5. Fontaras, Georgios & Grigoratos, Theodoros & Savvidis, Dimitrios & Anagnostopoulos, Konstantinos & Luz, Raphael & Rexeis, Martin & Hausberger, Stefan, 2016. "An experimental evaluation of the methodology proposed for the monitoring and certification of CO2 emissions from heavy-duty vehicles in Europe," Energy, Elsevier, vol. 102(C), pages 354-364.
    6. Farzaneh-Gord, Mahmood & Niazmand, Amir & Deymi-Dashtebayaz, Mahdi & Rahbari, Hamid Reza, 2015. "Effects of natural gas compositions on CNG (compressed natural gas) reciprocating compressors performance," Energy, Elsevier, vol. 90(P1), pages 1152-1162.
    7. Duan, Xiongbo & Feng, Lining & Liu, Haibo & Jiang, Pengfei & Chen, Chao & Sun, Zhiqiang, 2023. "Experimental investigation on exhaust emissions of a heavy-duty vehicle powered by a methanol-fuelled spark ignition engine under world Harmonized Transient Cycle and actual on-road driving conditions," Energy, Elsevier, vol. 282(C).
    8. Park, Cheolwoong & Kim, Changgi & Lee, Sangho & Lee, Sunyoup & Lee, Janghee, 2019. "Comparative evaluation of performance and emissions of CNG engine for heavy-duty vehicles fueled with various caloric natural gases," Energy, Elsevier, vol. 174(C), pages 1-9.
    9. Chen, Zheng & Ai, Yaquan & Qin, Tao & Luo, Feng, 2019. "Quantitative evaluation of n-butane concentration on knock severity of a natural gas heavy-duty SI engine," Energy, Elsevier, vol. 189(C).
    10. Rosero, Fredy & Fonseca, Natalia & López, José-María & Casanova, Jesús, 2021. "Effects of passenger load, road grade, and congestion level on real-world fuel consumption and emissions from compressed natural gas and diesel urban buses," Applied Energy, Elsevier, vol. 282(PB).
    11. Hajbabaei, Maryam & Karavalakis, Georgios & Johnson, Kent C. & Lee, Linda & Durbin, Thomas D., 2013. "Impact of natural gas fuel composition on criteria, toxic, and particle emissions from transit buses equipped with lean burn and stoichiometric engines," Energy, Elsevier, vol. 62(C), pages 425-434.
    12. Sebastian Schuh & Jens Frühhaber & Thomas Lauer & Franz Winter, 2019. "A Novel Dual Fuel Reaction Mechanism for Ignition in Natural Gas–Diesel Combustion," Energies, MDPI, vol. 12(22), pages 1-32, November.
    13. Fan, Baowei & Zeng, Yonghao & Pan, Jianfeng & Fang, Jia & Salami, Hammed Adeniyi & Wang, Yuanguang, 2022. "Numerical study of injection strategy on the combustion process in a peripheral ported rotary engine fueled with natural gas/hydrogen blends under the action of apex seal leakage," Energy, Elsevier, vol. 242(C).
    14. Dhahad, Hayder A. & Chaichan, Miqdam T. & Megaritis, T., 2019. "Performance, regulated and unregulated exhaust emission of a stationary compression ignition engine fueled by water-ULSD emulsion," Energy, Elsevier, vol. 181(C), pages 1036-1050.
    15. Yang, Li-Ping & Song, En-Zhe & Ding, Shun-Liang & Brown, Richard J. & Marwan, Norbert & Ma, Xiu-Zhen, 2016. "Analysis of the dynamic characteristics of combustion instabilities in a pre-mixed lean-burn natural gas engine," Applied Energy, Elsevier, vol. 183(C), pages 746-759.
    16. Diming Lou & Yedi Ren & Xiang Li & Yunhua Zhang & Xia Sun, 2020. "Effect of Operating Conditions and TWC Parameters on Emissions Characteristics of a Stoichiometric Natural Gas Engine," Energies, MDPI, vol. 13(18), pages 1-18, September.
    17. Alrazen, Hayder A. & Abu Talib, A.R. & Adnan, R. & Ahmad, K.A., 2016. "A review of the effect of hydrogen addition on the performance and emissions of the compression – Ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 785-796.
    18. Elia Distaso & Riccardo Amirante & Giuseppe Calò & Pietro De Palma & Paolo Tamburrano, 2020. "Evolution of Soot Particle Number, Mass and Size Distribution along the Exhaust Line of a Heavy-Duty Engine Fueled with Compressed Natural Gas," Energies, MDPI, vol. 13(15), pages 1-16, August.
    19. Makmool, U. & Jugjai, S. & Tia, S. & Vallikul, P. & Fungtammasan, B., 2007. "Performance and analysis by particle image velocimetry (PIV) of cooker-top burners in Thailand," Energy, Elsevier, vol. 32(10), pages 1986-1995.
    20. Lee, Sangho & Yi, Ui Hyung & Jang, Hyungjoon & Park, Cheolwoong & Kim, Changgi, 2021. "Evaluation of emission characteristics of a stoichiometric natural gas engine fueled with compressed natural gas and biomethane," Energy, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3997-:d:278696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.