IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i19p3649-d270276.html
   My bibliography  Save this article

Effect of Salt Addition upon the Production of Metabolic Compounds by Yarrowia lipolytica Cultivated on Biodiesel-Derived Glycerol Diluted with Olive-Mill Wastewaters

Author

Listed:
  • Markella Tzirita

    (Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece)

  • Maria Kremmyda

    (Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece)

  • Dimitris Sarris

    (Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
    Department of Food Science & Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Lemnos, Greece)

  • Apostolis A. Koutinas

    (Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece)

  • Seraphim Papanikolaou

    (Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece)

Abstract

One of the major environmental problems is the highly toxic agro-industrial waste called olive mill wastewater (OMW), deriving from olive oil production. On the other hand, the continuous development of the biological liquid fuel industry (biodiesel and bioethanol) makes it mandatory the process and exploitation of their main by-products, crude glycerol. This study dealt with the biotechnological conversions of biodiesel-derived crude glycerol with the use of the non-conventional yeast Yarrowia lipolytica in media that had been diluted with OMWs. OMWs, employed as simultaneous liquid medium and substrate, is a new trend recently appearing in Industrial Biotechnology, where value-added metabolites could be produced with simultaneous partial detoxification (i.e. decolorization and phenol removal) of the used residue. In the present study, diluted OMWs (containing 2.0 g/L of total phenolic compounds) blended with 70.0 g/L crude glycerol were employed as substrates. Production of value-added compounds by Y. lipolytica strain ACA-YC 5031 was studied in nitrogen-limited media favoring the production of secondary metabolites (i.e. citric acid, polyols, microbial lipids, polysaccharides). Batch-flask cultures were carried out and the impact of the addition of different NaCl concentrations (1.0%, 3.0%, 5.0% w / w ) added upon the biochemical behavior of the strain was studied. Remarkable biomass production was observed in all trials, while in the “blank” experiment (no OMWs and no salt added), the metabolism was shifted toward the synthesis of polyols (Σpolyols = mannitol + arabitol + erythritol > 20 g/L and maximum total citric acid-Cit (sum of citric and isocitric acid) = 10.5 g/L). Addition of OMWs resulted in Cit max = 32.7 g/L, while Σpolyols concentration dropped to <15 g/L. Addition of salt in the OMW-based media slightly reduced the produced biomass, while Cit production drastically increased, reaching a final value of 54.0 g/L (conversion yield of Cit produced per unit of glycerol consumed = 0.82 g/g) in the trial with addition of 5.0% NaCl. Finally, significant color and phenols removal were observed, evaluating the yeast as a decontamination medium for the OMW and a great candidate for the production of value-added compounds.

Suggested Citation

  • Markella Tzirita & Maria Kremmyda & Dimitris Sarris & Apostolis A. Koutinas & Seraphim Papanikolaou, 2019. "Effect of Salt Addition upon the Production of Metabolic Compounds by Yarrowia lipolytica Cultivated on Biodiesel-Derived Glycerol Diluted with Olive-Mill Wastewaters," Energies, MDPI, vol. 12(19), pages 1-19, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3649-:d:270276
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/19/3649/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/19/3649/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Monteiro, Marcos Roberto & Kugelmeier, Cristie Luis & Pinheiro, Rafael Sanaiotte & Batalha, Mario Otávio & da Silva César, Aldara, 2018. "Glycerol from biodiesel production: Technological paths for sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 109-122.
    2. Chatzifragkou, Afroditi & Makri, Anna & Belka, Aikaterini & Bellou, Stamatina & Mavrou, Marilena & Mastoridou, Maria & Mystrioti, Paraskevi & Onjaro, Grace & Aggelis, George & Papanikolaou, Seraphim, 2011. "Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species," Energy, Elsevier, vol. 36(2), pages 1097-1108.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ennaceri, Houda & Fischer, Kristina & Schulze, Agnes & Moheimani, Navid Reza, 2022. "Membrane fouling control for sustainable microalgal biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Nouri, Hoda & Moghimi, Hamid & Nikbakht Rad, Mahzad & Ostovar, Marjan & Farazandeh Mehr, Shima Sadat & Ghanaatian, Fateme & Talebi, Ahmad Farhad, 2019. "Enhanced growth and lipid production in oleaginous fungus, Sarocladium kiliense ADH17: Study on fatty acid profiling and prediction of biodiesel properties," Renewable Energy, Elsevier, vol. 135(C), pages 10-20.
    3. Cédric Decarpigny & Abdulhadi Aljawish & Cédric His & Bertrand Fertin & Muriel Bigan & Pascal Dhulster & Michel Millares & Rénato Froidevaux, 2022. "Bioprocesses for the Biodiesel Production from Waste Oils and Valorization of Glycerol," Energies, MDPI, vol. 15(9), pages 1-30, May.
    4. Cheng Li & Keaton L. Lesnik & Hong Liu, 2013. "Microbial Conversion of Waste Glycerol from Biodiesel Production into Value-Added Products," Energies, MDPI, vol. 6(9), pages 1-30, September.
    5. Severo, Ihana Aguiar & Siqueira, Stefania Fortes & Deprá, Mariany Costa & Maroneze, Mariana Manzoni & Zepka, Leila Queiroz & Jacob-Lopes, Eduardo, 2019. "Biodiesel facilities: What can we address to make biorefineries commercially competitive?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 686-705.
    6. Zhang, Xiaolei & Yan, Song & Tyagi, Rajeshwar Dayal & Drogui, Patrick & Surampalli, Rao Y., 2016. "Ultrasonication aided biodiesel production from one-step and two-step transesterification of sludge derived lipid," Energy, Elsevier, vol. 94(C), pages 401-408.
    7. Kugelmeier, Cristie Luis & Monteiro, Marcos Roberto & da Silva, Rodrigo & Kuri, Sebastião Elias & Sordi, Vitor Luiz & Della Rovere, Carlos Alberto, 2021. "Corrosion behavior of carbon steel, stainless steel, aluminum and copper upon exposure to biodiesel blended with petrodiesel," Energy, Elsevier, vol. 226(C).
    8. Schneider, T. & Graeff-Hönninger, S. & French, W.T. & Hernandez, R. & Merkt, N. & Claupein, W. & Hetrick, M. & Pham, P., 2013. "Lipid and carotenoid production by oleaginous red yeast Rhodotorula glutinis cultivated on brewery effluents," Energy, Elsevier, vol. 61(C), pages 34-43.
    9. Oliveira, V.B. & Simões, M. & Melo, L.F. & Pinto, A.M.F.R., 2013. "A 1D mathematical model for a microbial fuel cell," Energy, Elsevier, vol. 61(C), pages 463-471.
    10. Mariem Harabi & Soumaya Neji Bouguerra & Fatma Marrakchi & Loukia P. Chrysikou & Stella Bezergianni & Mohamed Bouaziz, 2019. "Biodiesel and Crude Glycerol from Waste Frying Oil: Production, Characterization and Evaluation of Biodiesel Oxidative Stability with Diesel Blends," Sustainability, MDPI, vol. 11(7), pages 1-15, April.
    11. Patel, Alok & Arora, Neha & Mehtani, Juhi & Pruthi, Vikas & Pruthi, Parul A., 2017. "Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 604-616.
    12. Monteiro, Rodolpho R.C. & Arana-Peña, Sara & da Rocha, Thays N. & Miranda, Letícia P. & Berenguer-Murcia, Ángel & Tardioli, Paulo W. & dos Santos, José C.S. & Fernandez-Lafuente, Roberto, 2021. "Liquid lipase preparations designed for industrial production of biodiesel. Is it really an optimal solution?," Renewable Energy, Elsevier, vol. 164(C), pages 1566-1587.
    13. Gutiérrez Ortiz, F.J. & Ollero, P. & Serrera, A. & Galera, S., 2012. "Process integration and exergy analysis of the autothermal reforming of glycerol using supercritical water," Energy, Elsevier, vol. 42(1), pages 192-203.
    14. Chen, Yi-Hung & Chen, Jhih-Hong & Luo, Yu-Min & Shang, Neng-Chou & Chang, Cheng-Hsin & Chang, Ching-Yuan & Chiang, Pen-Chi & Shie, Je-Lueng, 2011. "Property modification of jatropha oil biodiesel by blending with other biodiesels or adding antioxidants," Energy, Elsevier, vol. 36(7), pages 4415-4421.
    15. Rafael Estevez & Laura Aguado-Deblas & Diego Luna & Felipa M. Bautista, 2019. "An Overview of the Production of Oxygenated Fuel Additives by Glycerol Etherification, Either with Isobutene or tert -Butyl Alcohol, over Heterogeneous Catalysts," Energies, MDPI, vol. 12(12), pages 1-20, June.
    16. Chen, Wei & Ma, Lin & Zhou, Peng-peng & Zhu, Yuan-min & Wang, Xiao-peng & Luo, Xin-an & Bao, Zhen-dong & Yu, Long-jiang, 2015. "A novel feedstock for biodiesel production: The application of palmitic acid from Schizochytrium," Energy, Elsevier, vol. 86(C), pages 128-138.
    17. Sedghi, Reza & Shahbeik, Hossein & Rastegari, Hajar & Rafiee, Shahin & Peng, Wanxi & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Chen, Wei-Hsin & Lam, Su Shiung & Pan, Junting & Tabatabaei, Meisam & A, 2022. "Turning biodiesel glycerol into oxygenated fuel additives and their effects on the behavior of internal combustion engines: A comprehensive systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    18. Jia, Guangxin & He, Beibei & Ma, Wenlin & Sun, Yifan, 2019. "Thermodynamic analysis based on simultaneous chemical and phase equilibrium for dehydration of glycerol with methanol," Energy, Elsevier, vol. 188(C).
    19. Hejna, Aleksander & Kosmela, Paulina & Formela, Krzysztof & Piszczyk, Łukasz & Haponiuk, Józef T., 2016. "Potential applications of crude glycerol in polymer technology–Current state and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 449-475.
    20. Is Fatimah & Imam Sahroni & Ganjar Fadillah & Muhammad Miqdam Musawwa & Teuku Meurah Indra Mahlia & Oki Muraza, 2019. "Glycerol to Solketal for Fuel Additive: Recent Progress in Heterogeneous Catalysts," Energies, MDPI, vol. 12(15), pages 1-14, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3649-:d:270276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.