IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i18p3521-d266874.html
   My bibliography  Save this article

Mitigation Strategy for Duck Curve in High Photovoltaic Penetration Power System Using Concentrating Solar Power Station

Author

Listed:
  • Qi Wang

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Ping Chang

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Runqing Bai

    (Electric Power Research Institute, State Grid Gansu Electric Power Company, Lanzhou 730070, China)

  • Wenfei Liu

    (Electric Power Research Institute, State Grid Gansu Electric Power Company, Lanzhou 730070, China)

  • Jianfeng Dai

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Yi Tang

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

Abstract

Concentrating solar power (CSP) station is counted as a promising flexible power supply when the net load power curve is duck-shaped in high photovoltaic (PV) penetration power system, which may lead to the serious phenomenon of PV curtailment and a large-capacity power shortage. This paper presents a mitigation strategy that replaces thermal power station with CSP station to participate in the optimal operation of power system for solving the duck-shaped net load power curve problem. The proposed strategy utilizes the dispatchability of thermal storage system (TSS) and the fast output regulation of unit in the CSP station. Simultaneously, considering the operation constraints of CSP station and network security constraints of the system, an optimization model is developed to minimize the overall cost including operation and penalty. The results obtained by nonlinear optimization function demonstrate that the replacement of concentrating solar power (CSP) station contributes to reducing the PV curtailment and lost load, while increasing the available equivalent slope for power balance. Thus, the proposed mitigation strategy can promote the penetration of PV generation and improve the flexibility of power system.

Suggested Citation

  • Qi Wang & Ping Chang & Runqing Bai & Wenfei Liu & Jianfeng Dai & Yi Tang, 2019. "Mitigation Strategy for Duck Curve in High Photovoltaic Penetration Power System Using Concentrating Solar Power Station," Energies, MDPI, vol. 12(18), pages 1-16, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3521-:d:266874
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/18/3521/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/18/3521/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alberto Bocca & Luca Bergamasco & Matteo Fasano & Lorenzo Bottaccioli & Eliodoro Chiavazzo & Alberto Macii & Pietro Asinari, 2018. "Multiple-Regression Method for Fast Estimation of Solar Irradiation and Photovoltaic Energy Potentials over Europe and Africa," Energies, MDPI, vol. 11(12), pages 1-17, December.
    2. Feng Qi & Fushuan Wen & Xunyuan Liu & Md. Abdus Salam, 2017. "A Residential Energy Hub Model with a Concentrating Solar Power Plant and Electric Vehicles," Energies, MDPI, vol. 10(8), pages 1-17, August.
    3. Du, Ershun & Zhang, Ning & Hodge, Bri-Mathias & Kang, Chongqing & Kroposki, Benjamin & Xia, Qing, 2018. "Economic justification of concentrating solar power in high renewable energy penetrated power systems," Applied Energy, Elsevier, vol. 222(C), pages 649-661.
    4. Jia Ning & Yi Tang & Qian Chen & Jianming Wang & Jianhua Zhou & Bingtuan Gao, 2017. "A Bi-Level Coordinated Optimization Strategy for Smart Appliances Considering Online Demand Response Potential," Energies, MDPI, vol. 10(4), pages 1-16, April.
    5. Hernández, J.C. & Medina, A. & Jurado, F., 2007. "Optimal allocation and sizing for profitability and voltage enhancement of PV systems on feeders," Renewable Energy, Elsevier, vol. 32(10), pages 1768-1789.
    6. Domínguez, R. & Conejo, A.J. & Carrión, M., 2014. "Operation of a fully renewable electric energy system with CSP plants," Applied Energy, Elsevier, vol. 119(C), pages 417-430.
    7. Zhao, Haoran & Wu, Qiuwei & Hu, Shuju & Xu, Honghua & Rasmussen, Claus Nygaard, 2015. "Review of energy storage system for wind power integration support," Applied Energy, Elsevier, vol. 137(C), pages 545-553.
    8. Nan Zhou & Nian Liu & Jianhua Zhang & Jinyong Lei, 2016. "Multi-Objective Optimal Sizing for Battery Storage of PV-Based Microgrid with Demand Response," Energies, MDPI, vol. 9(8), pages 1-24, July.
    9. Santos-Alamillos, F.J. & Pozo-Vázquez, D. & Ruiz-Arias, J.A. & Von Bremen, L. & Tovar-Pescador, J., 2015. "Combining wind farms with concentrating solar plants to provide stable renewable power," Renewable Energy, Elsevier, vol. 76(C), pages 539-550.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongyi Huang & Atsushi Yona & Hiroshi Takahashi & Ashraf Mohamed Hemeida & Paras Mandal & Alexey Mikhaylov & Tomonobu Senjyu & Mohammed Elsayed Lotfy, 2021. "Energy Management System Optimization of Drug Store Electric Vehicles Charging Station Operation," Sustainability, MDPI, vol. 13(11), pages 1-14, May.
    2. Wenhui Zhao & Zilin Wu & Bo Zhou & Jiaoqian Gao, 2024. "Wind and PV Power Consumption Strategy Based on Demand Response: A Model for Assessing User Response Potential Considering Differentiated Incentives," Sustainability, MDPI, vol. 16(8), pages 1-23, April.
    3. Kanato Tamashiro & Talal Alharbi & Alexey Mikhaylov & Ashraf M. Hemeida & Narayanan Krishnan & Mohammed Elsayed Lotfy & Tomonobu Senjyu, 2021. "Investigation of Home Energy Management with Advanced Direct Load Control and Optimal Scheduling of Controllable Loads," Energies, MDPI, vol. 14(21), pages 1-14, November.
    4. Hao Wu & Lin Zhou & Yihao Wan & Qiang Liu & Siyu Zhou, 2019. "A Mixed Uncertainty Power Flow Algorithm-Based Centralized Photovoltaic (PV) Cluster," Energies, MDPI, vol. 12(20), pages 1-16, October.
    5. Harsh Wardhan Pandey & Ramesh Kumar & Rajib Kumar Mandal, 2023. "Ranking of mitigation strategies for duck curve in Indian active distribution network using MCDM," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(4), pages 1255-1275, August.
    6. Oscar Danilo Montoya & Luis Fernando Grisales-Noreña & Alberto-Jesus Perea-Moreno, 2021. "Optimal Investments in PV Sources for Grid-Connected Distribution Networks: An Application of the Discrete–Continuous Genetic Algorithm," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    7. Bhattacharya, Saptarshi & Pennock, Shona & Robertson, Bryson & Hanif, Sarmad & Alam, Md Jan E. & Bhatnagar, Dhruv & Preziuso, Danielle & O’Neil, Rebecca, 2021. "Timing value of marine renewable energy resources for potential grid applications," Applied Energy, Elsevier, vol. 299(C).
    8. Handrea Bernando Tambunan & Dzikri Firmansyah Hakam & Iswan Prahastono & Anita Pharmatrisanti & Andreas Putro Purnomoadi & Siti Aisyah & Yonny Wicaksono & I Gede Ryan Sandy, 2020. "The Challenges and Opportunities of Renewable Energy Source (RES) Penetration in Indonesia: Case Study of Java-Bali Power System," Energies, MDPI, vol. 13(22), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Ershun & Zhang, Ning & Hodge, Bri-Mathias & Kang, Chongqing & Kroposki, Benjamin & Xia, Qing, 2018. "Economic justification of concentrating solar power in high renewable energy penetrated power systems," Applied Energy, Elsevier, vol. 222(C), pages 649-661.
    2. Mena, R. & Escobar, R. & Lorca, Á. & Negrete-Pincetic, M. & Olivares, D., 2019. "The impact of concentrated solar power in electric power systems: A Chilean case study," Applied Energy, Elsevier, vol. 235(C), pages 258-283.
    3. Kanato Tamashiro & Talal Alharbi & Alexey Mikhaylov & Ashraf M. Hemeida & Narayanan Krishnan & Mohammed Elsayed Lotfy & Tomonobu Senjyu, 2021. "Investigation of Home Energy Management with Advanced Direct Load Control and Optimal Scheduling of Controllable Loads," Energies, MDPI, vol. 14(21), pages 1-14, November.
    4. Georgios E. Arnaoutakis & Georgia Kefala & Eirini Dakanali & Dimitris Al. Katsaprakakis, 2022. "Combined Operation of Wind-Pumped Hydro Storage Plant with a Concentrating Solar Power Plant for Insular Systems: A Case Study for the Island of Rhodes," Energies, MDPI, vol. 15(18), pages 1-23, September.
    5. Qi, Yuchen & Hu, Wei & Dong, Yu & Fan, Yue & Dong, Ling & Xiao, Ming, 2020. "Optimal configuration of concentrating solar power in multienergy power systems with an improved variational autoencoder," Applied Energy, Elsevier, vol. 274(C).
    6. Wang, Pengya & Wang, Jianxiao & Jin, Ruiyang & Li, Gengyin & Zhou, Ming & Xia, Qing, 2022. "Integrating biogas in regional energy systems to achieve near-zero carbon emissions," Applied Energy, Elsevier, vol. 322(C).
    7. Powell, Kody M. & Rashid, Khalid & Ellingwood, Kevin & Tuttle, Jake & Iverson, Brian D., 2017. "Hybrid concentrated solar thermal power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 215-237.
    8. Coronas, Sergio & Martín, Helena & de la Hoz, Jordi & García de Vicuña, Luis & Castilla, Miguel, 2021. "MONTE-CARLO probabilistic valuation of concentrated solar power systems in Spain under the 2014 retroactive regulatory framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    9. Norambuena-Guzmán, Valentina & Palma-Behnke, Rodrigo & Hernández-Moris, Catalina & Cerda, Maria Teresa & Flores-Quiroz, Ángela, 2024. "Towards CSP technology modeling in power system expansion planning," Applied Energy, Elsevier, vol. 364(C).
    10. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    11. Qin, Chao & Saunders, Gordon & Loth, Eric, 2017. "Offshore wind energy storage concept for cost-of-rated-power savings," Applied Energy, Elsevier, vol. 201(C), pages 148-157.
    12. Gui, Yonghao & Wei, Baoze & Li, Mingshen & Guerrero, Josep M. & Vasquez, Juan C., 2018. "Passivity-based coordinated control for islanded AC microgrid," Applied Energy, Elsevier, vol. 229(C), pages 551-561.
    13. Danish, Syed Noman & Al-Ansary, Hany & El-Leathy, Abdelrahman & Ba-Abbad, Mazen & Khan, Salah Ud-Din & Rizvi, Arslan & Orfi, Jamel & Al-Nakhli, Ahmed, 2022. "Experimental and techno-economic analysis of two innovative solar thermal receiver designs for a point focus solar Fresnel collector," Energy, Elsevier, vol. 261(PA).
    14. Vrînceanu, Alexandra & Dumitrașcu, Monica & Kucsicsa, Gheorghe, 2022. "Site suitability for photovoltaic farms and current investment in Romania," Renewable Energy, Elsevier, vol. 187(C), pages 320-330.
    15. Jiaxin Lu & Weijun Wang & Yingchao Zhang & Song Cheng, 2017. "Multi-Objective Optimal Design of Stand-Alone Hybrid Energy System Using Entropy Weight Method Based on HOMER," Energies, MDPI, vol. 10(10), pages 1-17, October.
    16. Cheng, Meng & Sami, Saif Sabah & Wu, Jianzhong, 2017. "Benefits of using virtual energy storage system for power system frequency response," Applied Energy, Elsevier, vol. 194(C), pages 376-385.
    17. Nyong-Bassey, Bassey Etim & Giaouris, Damian & Patsios, Charalampos & Papadopoulou, Simira & Papadopoulos, Athanasios I. & Walker, Sara & Voutetakis, Spyros & Seferlis, Panos & Gadoue, Shady, 2020. "Reinforcement learning based adaptive power pinch analysis for energy management of stand-alone hybrid energy storage systems considering uncertainty," Energy, Elsevier, vol. 193(C).
    18. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    19. Nian Liu & Cheng Wang & Minyang Cheng & Jie Wang, 2016. "A Privacy-Preserving Distributed Optimal Scheduling for Interconnected Microgrids," Energies, MDPI, vol. 9(12), pages 1-18, December.
    20. Fichter, Tobias & Soria, Rafael & Szklo, Alexandre & Schaeffer, Roberto & Lucena, Andre F.P., 2017. "Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model," Energy, Elsevier, vol. 121(C), pages 695-715.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3521-:d:266874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.