IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i17p3281-d261107.html
   My bibliography  Save this article

Optimization of Air Distribution to Reduce NOx Emission and Unburned Carbon for the Retrofit of a 500 MWe Tangential-Firing Coal Boiler

Author

Listed:
  • Hyunbin Jo

    (School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea)

  • Kiseop Kang

    (School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea)

  • Jongkeun Park

    (School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea)

  • Changkook Ryu

    (School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea)

  • Hyunsoo Ahn

    (Doosan Heavy Industries and Construction, Youngin 16858, Korea)

  • Younggun Go

    (Doosan Heavy Industries and Construction, Youngin 16858, Korea)

Abstract

The use of separated overfire air (SOFA) has become a standard technique of air staging for NOx reduction in the coal-fired boiler and can also be applied to existing boilers by retrofit. This study was to optimize the air distribution for the proposed SOFA installation in a 500 MWe tangential-firing boiler that has 20 identical units in Korea. Using computational fluid dynamics (CFD) incorporating advanced coal combustion submodels, the reference case was established in good agreement with the design data, and different flow ratios of burner secondary air, close-coupled OFA (CCOFA), and SOFA were evaluated. Increasing the total OFA ratio effectively suppressed NO formation within the burner zone but had a negative impact on the boiler performance. With moderate air staging, NO reduction became active between the CCOFA and SOFA levels and, therefore, the OFA distribution could be optimized for the overall boiler performance. For total OFA ratios of 25% and 30% with respective burner zone stoichiometric ratios of 0.847 and 0.791, increasing the SOFA ratio to 15% and 20%, respectively, was ideal for decreasing the unburned carbon release and ash slagging as well as NO emission. Too high or low SOFA ratios rapidly increased the unburned carbon because of inefficient mixing between the strong air jets and char particles. Based on these ideal cases, the actual air distribution can be adjusted depending on the coal properties such as the ash slagging propensity.

Suggested Citation

  • Hyunbin Jo & Kiseop Kang & Jongkeun Park & Changkook Ryu & Hyunsoo Ahn & Younggun Go, 2019. "Optimization of Air Distribution to Reduce NOx Emission and Unburned Carbon for the Retrofit of a 500 MWe Tangential-Firing Coal Boiler," Energies, MDPI, vol. 12(17), pages 1-20, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3281-:d:261107
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/17/3281/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/17/3281/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Xiaofeng & Fan, Weidong & Liu, Yacheng & Bian, Bao, 2019. "Numerical simulation research on the unique thermal deviation in a 1000 MW tower type boiler," Energy, Elsevier, vol. 173(C), pages 1006-1020.
    2. Ma, Lun & Fang, Qingyan & Tan, Peng & Zhang, Cheng & Chen, Gang & Lv, Dangzhen & Duan, Xuenong & Chen, Yiping, 2016. "Effect of the separated overfire air location on the combustion optimization and NOx reduction of a 600MWe FW down-fired utility boiler with a novel combustion system," Applied Energy, Elsevier, vol. 180(C), pages 104-115.
    3. Li, Sen & Xu, Tongmo & Hui, Shien & Wei, Xiaolin, 2009. "NOx emission and thermal efficiency of a 300Â MWe utility boiler retrofitted by air staging," Applied Energy, Elsevier, vol. 86(9), pages 1797-1803, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyunbin Jo & Jongkeun Park & Woosuk Kang & Junseok Hong & Sungmin Yoon & Howon Ra & Changkook Ryu, 2021. "Influence of Uneven Secondary Air Supply and Burner Tilt on Flow Pattern, Heat Transfer, and NOx Emissions in a 500 MWe Tangential-Firing Coal Boiler," Energies, MDPI, vol. 14(24), pages 1-18, December.
    2. Bartłomiej Hernik, 2020. "Numerical Research of the Modification of the Combustion System in the OP 650 Boiler," Energies, MDPI, vol. 13(3), pages 1-22, February.
    3. Yuan, Zhenhua & Chen, Zhichao & Zhang, Bo & Gao, Xuelin & Li, Jiawei & Qiao, Yanyu & Li, Zhengqi, 2023. "Study on the slagging trends of the pre-combustion chamber in industrial pulverized coal boiler under different excess air coefficients by CFD numerical simulation," Energy, Elsevier, vol. 264(C).
    4. Andrey Rogalev & Nikolay Rogalev & Vladimir Kindra & Ivan Komarov & Olga Zlyvko, 2021. "Research and Development of the Oxy-Fuel Combustion Power Cycles with CO 2 Recirculation," Energies, MDPI, vol. 14(10), pages 1-18, May.
    5. Aliya Askarova & Saltanat Bolegenova & Valeriy Maximov & Symbat Bolegenova & Nariman Askarov & Aizhan Nugymanova, 2021. "Computer Technologies of 3D Modeling by Combustion Processes to Create Effective Methods of Burning Solid Fuel and Reduce Harmful Dust and Gas Emissions into the Atmosphere," Energies, MDPI, vol. 14(5), pages 1-22, February.
    6. Jiseok Lee & Seunghan Yu & Jinje Park & Hyunbin Jo & Jongkeun Park & Changkook Ryu & Yeong-gap Jeong, 2020. "Reduction of Unburned Carbon Release and NO x Emission from a Pulverized Wood Pellet Boiler Retrofitted for Fuel Switching from Coal," Energies, MDPI, vol. 13(19), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Donghao & Yan, Jingwen & Liu, Xin & Zhang, Chaoqun & Wang, Heyang, 2023. "Prediction of tube temperature distribution of boiler platen superheater by a coupled combustion and hydrodynamic model," Energy, Elsevier, vol. 279(C).
    2. Yuan, Zhenhua & Chen, Zhichao & Zhang, Bo & Gao, Xuelin & Li, Jiawei & Qiao, Yanyu & Li, Zhengqi, 2023. "Study on the slagging trends of the pre-combustion chamber in industrial pulverized coal boiler under different excess air coefficients by CFD numerical simulation," Energy, Elsevier, vol. 264(C).
    3. Zhou, Jing & Zhu, Meng & Xu, Kai & Su, Sheng & Tang, Yifang & Hu, Song & Wang, Yi & Xu, Jun & He, Limo & Xiang, Jun, 2020. "Key issues and innovative double-tangential circular boiler configurations for the 1000 MW coal-fired supercritical carbon dioxide power plant," Energy, Elsevier, vol. 199(C).
    4. Chen, Zhichao & Yuan, Zhenhua & Zhang, Bo & Qiao, Yanyu & Li, Jiawei & Zeng, Lingyan & Li, Zhengqi, 2022. "Effect of secondary air mass flow rate ratio on the slagging characteristics of the pre-combustion chamber in industrial pulverized coal-fired boiler," Energy, Elsevier, vol. 251(C).
    5. Ling, Zhongqian & Ling, Bo & Kuang, Min & Li, Zhengqi & Lu, Ye, 2017. "Comparison of airflow, coal combustion, NOx emissions, and slagging characteristics among three large-scale MBEL down-fired boilers manufactured at different times," Applied Energy, Elsevier, vol. 187(C), pages 689-705.
    6. Wang, Qingxiang & Chen, Zhichao & Wang, Jiaquan & Zeng, Lingyan & Zhang, Xin & Li, Xiaoguang & Li, Zhengqi, 2018. "Effects of secondary air distribution in primary combustion zone on combustion and NOx emissions of a large-scale down-fired boiler with air staging," Energy, Elsevier, vol. 165(PB), pages 399-410.
    7. Chen, Zhichao & Wang, Qingxiang & Zhang, Xiaoyan & Zeng, Lingyan & Zhang, Xin & He, Tao & Liu, Tao & Li, Zhengqi, 2017. "Industrial-scale investigations of anthracite combustion characteristics and NOx emissions in a retrofitted 300 MWe down-fired utility boiler with swirl burners," Applied Energy, Elsevier, vol. 202(C), pages 169-177.
    8. Chen, Zhichao & Wang, Qingxiang & Wang, Bingnan & Zeng, Lingyan & Che, Miaomiao & Zhang, Xin & Li, Zhengqi, 2017. "Anthracite combustion characteristics and NOx formation of a 300MWe down-fired boiler with swirl burners at different loads after the implementation of a new combustion system," Applied Energy, Elsevier, vol. 189(C), pages 133-141.
    9. Ma, Lun & Fang, Qingyan & Yin, Chungen & Wang, Huajian & Zhang, Cheng & Chen, Gang, 2019. "A novel corner-fired boiler system of improved efficiency and coal flexibility and reduced NOx emissions," Applied Energy, Elsevier, vol. 238(C), pages 453-465.
    10. Zhang, Xin & Chen, Zhichao & Hou, Jian & Liu, Zheng & Zeng, Lingyan & Li, Zhengqi, 2022. "Evaluation of wide-range coal combustion performance of a novel down-fired combustion technology based on gas–solid two-phase flow characteristics," Energy, Elsevier, vol. 248(C).
    11. Zhou, Jing & Zhu, Meng & Su, Sheng & Chen, Lei & Xu, Jun & Hu, Song & Wang, Yi & Jiang, Long & Zhong, Wenqi & Xiang, Jun, 2020. "Numerical analysis and modified thermodynamic calculation methods for the furnace in the 1000 MW supercritical CO2 coal-fired boiler," Energy, Elsevier, vol. 212(C).
    12. Wang, Qingxiang & Chen, Zhichao & Han, Hui & Zeng, Lingyan & Li, Zhengqi, 2019. "Experimental characterization of anthracite combustion and NOx emission for a 300-MWe down-fired boiler with a novel combustion system: Influence of primary and vent air distributions," Applied Energy, Elsevier, vol. 238(C), pages 1551-1562.
    13. Sajad Koochakinia & Amir Ebrahimi-Moghadam & Mahdi Deymi-Dashtebayaz, 2022. "Techno-Environmental Analyses and Optimization of a Utility Boiler Based on Real Data," Sustainability, MDPI, vol. 14(5), pages 1-19, February.
    14. Li, Shiyuan & Xu, Mingxin & Jia, Lufei & Tan, Li & Lu, Qinggang, 2016. "Influence of operating parameters on N2O emission in O2/CO2 combustion with high oxygen concentration in circulating fluidized bed," Applied Energy, Elsevier, vol. 173(C), pages 197-209.
    15. Żaklin Grądz & Waldemar Wójcik & Konrad Gromaszek & Andrzej Kotyra & Saule Smailova & Aigul Iskakova & Bakhyt Yeraliyeva & Saule Kumargazhanova & Baglan Imanbek, 2023. "Application of Fuzzy Neural Networks in Combustion Process Diagnostics," Energies, MDPI, vol. 17(1), pages 1-19, December.
    16. Wang, Qingxiang & Chen, Zhichao & Wang, Liang & Zeng, Lingyan & Li, Zhengqi, 2018. "Application of eccentric-swirl-secondary-air combustion technology for high-efficiency and low-NOx performance on a large-scale down-fired boiler with swirl burners," Applied Energy, Elsevier, vol. 223(C), pages 358-368.
    17. Fan, Weidong & Lin, Zhengchun & Li, Youyi & Zhang, Mingchuan, 2010. "Experimental flow field characteristics of OFA for large-angle counter flow of fuel-rich jet combustion technology," Applied Energy, Elsevier, vol. 87(8), pages 2737-2745, August.
    18. Taehyun Lee & Eungsu Han & Un-Chul Moon & Kwang Y. Lee, 2020. "Supplementary Control of Air–Fuel Ratio Using Dynamic Matrix Control for Thermal Power Plant Emission," Energies, MDPI, vol. 13(1), pages 1-15, January.
    19. Wang, Chang'an & Zhao, Lin & Sun, Ruijin & Zhou, Lei & Jin, Liyan & Che, Defu, 2022. "Experimental study on NO emission and ash deposition during oxy-fuel combustion of high-alkali coal under oxygen-staged conditions," Energy, Elsevier, vol. 251(C).
    20. Pei Li & Ting Bao & Jian Guan & Zifu Shi & Zengxiao Xie & Yonggang Zhou & Wei Zhong, 2023. "Computational Analysis of Tube Wall Temperature of Superheater in 1000 MW Ultra-Supercritical Boiler Based on the Inlet Thermal Deviation," Energies, MDPI, vol. 16(3), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3281-:d:261107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.