IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i15p2980-d254054.html
   My bibliography  Save this article

Using Self Organizing Maps to Achieve Lithium-Ion Battery Cells Multi-Parameter Sorting Based on Principle Components Analysis

Author

Listed:
  • Bizhong Xia

    (Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China)

  • Yadi Yang

    (Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China)

  • Jie Zhou

    (Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China)

  • Guanghao Chen

    (Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China)

  • Yifan Liu

    (Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China)

  • Huawen Wang

    (Sunwoda Electronic Co. Ltd., Shenzhen 518108, China)

  • Mingwang Wang

    (Sunwoda Electronic Co. Ltd., Shenzhen 518108, China)

  • Yongzhi Lai

    (Sunwoda Electronic Co. Ltd., Shenzhen 518108, China)

Abstract

Battery sorting is an important process in the production of lithium battery module and battery pack for electric vehicles (EVs). Accurate battery sorting can ensure good consistency of batteries for grouping. This study investigates the mechanism of inconsistency of battery packs and process of battery sorting on the lithium-ion battery module production line. Combined with the static and dynamic characteristics of lithium-ion batteries, the battery parameters on the production line that can be used as a sorting basis are analyzed, and the parameters of battery mass, volume, resistance, voltage, charge/discharge capacity and impedance characteristics are measured. The data of batteries are processed by the principal component analysis (PCA) method in statistics, and after analysis, the parameters of batteries are obtained. Principal components are used as sorting variables, and the self-organizing map (SOM) neural network is carried out to cluster the batteries. Group experiments are carried out on the separated batteries, and state of charge (SOC) consistency of the batteries is achieved to verify that the sorting algorithm and sorting result is accurate.

Suggested Citation

  • Bizhong Xia & Yadi Yang & Jie Zhou & Guanghao Chen & Yifan Liu & Huawen Wang & Mingwang Wang & Yongzhi Lai, 2019. "Using Self Organizing Maps to Achieve Lithium-Ion Battery Cells Multi-Parameter Sorting Based on Principle Components Analysis," Energies, MDPI, vol. 12(15), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2980-:d:254054
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/15/2980/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/15/2980/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Jonghoon & Cho, B.H., 2013. "Screening process-based modeling of the multi-cell battery string in series and parallel connections for high accuracy state-of-charge estimation," Energy, Elsevier, vol. 57(C), pages 581-599.
    2. Bizhong Xia & Shengkun Guo & Wei Wang & Yongzhi Lai & Huawen Wang & Mingwang Wang & Weiwei Zheng, 2018. "A State of Charge Estimation Method Based on Adaptive Extended Kalman-Particle Filtering for Lithium-ion Batteries," Energies, MDPI, vol. 11(10), pages 1-15, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali, Hayder & Khan, Hassan Abbas & Pecht, Michael, 2022. "Preprocessing of spent lithium-ion batteries for recycling: Need, methods, and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Hongwei Tang & Anping Lin & Wei Sun & Shuqi Shi, 2020. "An Improved SOM-Based Method for Multi-Robot Task Assignment and Cooperative Search in Unknown Dynamic Environments," Energies, MDPI, vol. 13(12), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiong, Rui & Sun, Fengchun & He, Hongwen & Nguyen, Trong Duy, 2013. "A data-driven adaptive state of charge and power capability joint estimator of lithium-ion polymer battery used in electric vehicles," Energy, Elsevier, vol. 63(C), pages 295-308.
    2. Li, Xiaoyu & Xu, Jianhua & Hong, Jianxun & Tian, Jindong & Tian, Yong, 2021. "State of energy estimation for a series-connected lithium-ion battery pack based on an adaptive weighted strategy," Energy, Elsevier, vol. 214(C).
    3. Bizhong Xia & Guanyong Zhang & Huiyuan Chen & Yuheng Li & Zhuojun Yu & Yunchao Chen, 2022. "Verification Platform of SOC Estimation Algorithm for Lithium-Ion Batteries of Electric Vehicles," Energies, MDPI, vol. 15(9), pages 1-20, April.
    4. Xingtao Liu & Chaoyi Zheng & Ji Wu & Jinhao Meng & Daniel-Ioan Stroe & Jiajia Chen, 2020. "An Improved State of Charge and State of Power Estimation Method Based on Genetic Particle Filter for Lithium-ion Batteries," Energies, MDPI, vol. 13(2), pages 1-16, January.
    5. Jiang, Cong & Wang, Shunli & Wu, Bin & Fernandez, Carlos & Xiong, Xin & Coffie-Ken, James, 2021. "A state-of-charge estimation method of the power lithium-ion battery in complex conditions based on adaptive square root extended Kalman filter," Energy, Elsevier, vol. 219(C).
    6. Bizhong Xia & Zhen Sun & Ruifeng Zhang & Deyu Cui & Zizhou Lao & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang, 2017. "A Comparative Study of Three Improved Algorithms Based on Particle Filter Algorithms in SOC Estimation of Lithium Ion Batteries," Energies, MDPI, vol. 10(8), pages 1-14, August.
    7. Sun, Li & Li, Guanru & You, Fengqi, 2020. "Combined internal resistance and state-of-charge estimation of lithium-ion battery based on extended state observer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    8. Victor Pizarro-Carmona & Marcelo Cortés-Carmona & Rodrigo Palma-Behnke & Williams Calderón-Muñoz & Marcos E. Orchard & Pablo A. Estévez, 2019. "An Optimized Impedance Model for the Estimation of the State-of-Charge of a Li-Ion Cell: The Case of a LiFePO 4 (ANR26650)," Energies, MDPI, vol. 12(4), pages 1-16, February.
    9. Shen, Yanqing, 2018. "Improved chaos genetic algorithm based state of charge determination for lithium batteries in electric vehicles," Energy, Elsevier, vol. 152(C), pages 576-585.
    10. Hu, Xiaosong & Li, Shengbo Eben & Jia, Zhenzhong & Egardt, Bo, 2014. "Enhanced sample entropy-based health management of Li-ion battery for electrified vehicles," Energy, Elsevier, vol. 64(C), pages 953-960.
    11. Chuanxue Song & Yulong Shao & Shixin Song & Cheng Chang & Fang Zhou & Silun Peng & Feng Xiao, 2017. "Energy Management of Parallel-Connected Cells in Electric Vehicles Based on Fuzzy Logic Control," Energies, MDPI, vol. 10(3), pages 1-13, March.
    12. Xiaoyu Li & Kai Song & Guo Wei & Rengui Lu & Chunbo Zhu, 2015. "A Novel Grouping Method for Lithium Iron Phosphate Batteries Based on a Fractional Joint Kalman Filter and a New Modified K-Means Clustering Algorithm," Energies, MDPI, vol. 8(8), pages 1-26, July.
    13. Li, Xiaoyu & Yuan, Changgui & Wang, Zhenpo & Xie, Jiale, 2022. "A data-fusion framework for lithium battery health condition Estimation Based on differential thermal voltammetry," Energy, Elsevier, vol. 239(PC).
    14. He, HongWen & Zhang, YongZhi & Xiong, Rui & Wang, Chun, 2015. "A novel Gaussian model based battery state estimation approach: State-of-Energy," Applied Energy, Elsevier, vol. 151(C), pages 41-48.
    15. Lee, Seongjun & Kim, Jonghoon, 2015. "Discrete wavelet transform-based denoising technique for advanced state-of-charge estimator of a lithium-ion battery in electric vehicles," Energy, Elsevier, vol. 83(C), pages 462-473.
    16. Yanhui, Zhang & Wenji, Song & Guoqing, Xu, 2014. "Relaxation effect analysis on the initial state of charge for LiNi0.5Co0.2Mn0.3O2/graphite battery," Energy, Elsevier, vol. 74(C), pages 368-373.
    17. Shen, Yanqing, 2014. "Hybrid unscented particle filter based state-of-charge determination for lead-acid batteries," Energy, Elsevier, vol. 74(C), pages 795-803.
    18. Firouz, Y. & Relan, R. & Timmermans, J.M. & Omar, N. & Van den Bossche, P. & Van Mierlo, J., 2016. "Advanced lithium ion battery modeling and nonlinear analysis based on robust method in frequency domain: Nonlinear characterization and non-parametric modeling," Energy, Elsevier, vol. 106(C), pages 602-617.
    19. Thomas Bruen & James Michael Hooper & James Marco & Miguel Gama & Gael Henri Chouchelamane, 2016. "Analysis of a Battery Management System (BMS) Control Strategy for Vibration Aged Nickel Manganese Cobalt Oxide (NMC) Lithium-Ion 18650 Battery Cells," Energies, MDPI, vol. 9(4), pages 1-20, April.
    20. Pei, Lei & Zhu, Chunbo & Wang, Tiansi & Lu, Rengui & Chan, C.C., 2014. "Online peak power prediction based on a parameter and state estimator for lithium-ion batteries in electric vehicles," Energy, Elsevier, vol. 66(C), pages 766-778.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2980-:d:254054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.