IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i15p2967-d253689.html
   My bibliography  Save this article

Assessment of the Impact of Stagnation Temperatures in Receiver Prototypes of C-PVT Collectors

Author

Listed:
  • João Gomes

    (Department of Construction, Energy and Environmental Engineering, Gävle University, 801 76 Gävle, Sweden)

Abstract

Concentrating Photovoltaic Thermal (C-PVT) solar collectors produce both thermal and electric power from the same area while concentrating sunlight. This paper studies a C-PVT design where strings of series-connected solar cells are encapsulated with silicone in an aluminium receiver, inside of which the heat transfer fluid flows, and presents an evaluation on structural integrity and performance, after reaching stagnation temperatures. Eight test receivers were made, in which the following properties were varied: Size of the PV cells, type of silicone used to encapsulate the cells, existence of a strain relief between the cells, size of the gap between cells, and type of cell soldering (line or point). The test receivers were placed eight times in an oven for one hour at eight different monitored temperatures. The temperature of the last round was set at 220 °C, which exceeds the highest temperature the panel design reaches. Before and after each round in the oven, the following tests were conducted to the receivers: Electroluminescence (EL) test, IV-curve tracing, diode function, and visual inspection. The test results showed that the receivers made with the transparent silicone and strain relief between cells experienced less microcracks and lower power degradation. No prototype test receiver lost more than 30% of its initial power, despite some receivers displaying a large number of cell cracks. The transparent and more elastic silicone is better at protecting the solar cells from the mechanical stress of thermal expansion than the compared silicone alternative, which was stiffer. As expected, larger cells are more prone to develop microcracks after exposure to thermal stress. Additionally, existing microcracks tend to grow in size relatively fast under thermal stress. EL imaging taken during our experiment leads us to conclude that it is far more likely for existing cracks to expand than for new cracks to appear.

Suggested Citation

  • João Gomes, 2019. "Assessment of the Impact of Stagnation Temperatures in Receiver Prototypes of C-PVT Collectors," Energies, MDPI, vol. 12(15), pages 1-20, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2967-:d:253689
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/15/2967/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/15/2967/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jirada Gosumbonggot & Goro Fujita, 2019. "Global Maximum Power Point Tracking under Shading Condition and Hotspot Detection Algorithms for Photovoltaic Systems," Energies, MDPI, vol. 12(5), pages 1-23, March.
    2. Yadong Wang & Kazutaka Itako & Tsugutomo Kudoh & Keishin Koh & Qiang Ge, 2017. "Voltage-Based Hot-Spot Detection Method for Photovoltaic String Using a Projector," Energies, MDPI, vol. 10(2), pages 1-14, February.
    3. Ümmühan Başaran Filik & Tansu Filik & Ömer Nezih Gerek, 2018. "A Hysteresis Model for Fixed and Sun Tracking Solar PV Power Generation Systems," Energies, MDPI, vol. 11(3), pages 1-15, March.
    4. Gabriele C. Eder & Yuliya Voronko & Christina Hirschl & Rita Ebner & Gusztáv Újvári & Wolfgang Mühleisen, 2018. "Non-Destructive Failure Detection and Visualization of Artificially and Naturally Aged PV Modules," Energies, MDPI, vol. 11(5), pages 1-14, April.
    5. Oswaldo Menéndez & Robert Guamán & Marcelo Pérez & Fernando Auat Cheein, 2018. "Photovoltaic Modules Diagnosis Using Artificial Vision Techniques for Artifact Minimization," Energies, MDPI, vol. 11(7), pages 1-23, June.
    6. Widyolar, Bennett K. & Abdelhamid, Mahmoud & Jiang, Lun & Winston, Roland & Yablonovitch, Eli & Scranton, Gregg & Cygan, David & Abbasi, Hamid & Kozlov, Aleksandr, 2017. "Design, simulation and experimental characterization of a novel parabolic trough hybrid solar photovoltaic/thermal (PV/T) collector," Renewable Energy, Elsevier, vol. 101(C), pages 1379-1389.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pouriya Nasseriyan & Hossein Afzali Gorouh & João Gomes & Diogo Cabral & Mazyar Salmanzadeh & Tiffany Lehmann & Abolfazl Hayati, 2020. "Numerical and Experimental Study of an Asymmetric CPC-PVT Solar Collector," Energies, MDPI, vol. 13(7), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Haifei & Li, Guiqiang & Zhong, Yang & Wang, Yunjie & Cai, Baorui & Yang, Jie & Badiei, Ali & Zhang, Yang, 2021. "Exergy analysis of a high concentration photovoltaic and thermal system for comprehensive use of heat and electricity," Energy, Elsevier, vol. 225(C).
    2. Carlos Toledo & Lucía Serrano-Lujan & Jose Abad & Antonio Lampitelli & Antonio Urbina, 2019. "Measurement of Thermal and Electrical Parameters in Photovoltaic Systems for Predictive and Cross-Correlated Monitorization," Energies, MDPI, vol. 12(4), pages 1-20, February.
    3. Sainz-Mañas, Miguel & Bataille, Françoise & Caliot, Cyril & Vossier, Alexis & Flamant, Gilles, 2022. "Direct absorption nanofluid-based solar collectors for low and medium temperatures. A review," Energy, Elsevier, vol. 260(C).
    4. Nonthawat Khortsriwong & Promphak Boonraksa & Terapong Boonraksa & Thipwan Fangsuwannarak & Asada Boonsrirat & Watcharakorn Pinthurat & Boonruang Marungsri, 2023. "Performance of Deep Learning Techniques for Forecasting PV Power Generation: A Case Study on a 1.5 MWp Floating PV Power Plant," Energies, MDPI, vol. 16(5), pages 1-21, February.
    5. Cui, Yuanlong & Zhu, Jie & Zoras, Stamatis & Zhang, Jizhe, 2021. "Comprehensive review of the recent advances in PV/T system with loop-pipe configuration and nanofluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Lu, Kegui & Yu, Qiongwan & Zhao, Bin & Pei, Gang, 2023. "Performance analysis of a novel PV/T hybrid system based on spectral beam splitting," Renewable Energy, Elsevier, vol. 207(C), pages 398-406.
    7. Herez, Amal & El Hage, Hicham & Lemenand, Thierry & Ramadan, Mohamad & Khaled, Mahmoud, 2021. "Parabolic trough photovoltaic/thermal hybrid system: Thermal modeling and parametric analysis," Renewable Energy, Elsevier, vol. 165(P1), pages 224-236.
    8. Zhang, Heng & Liang, Kai & Chen, Haiping & Gao, Dan & Guo, Xinxin, 2019. "Thermal and electrical performance of low-concentrating PV/T and flat-plate PV/T systems: A comparative study," Energy, Elsevier, vol. 177(C), pages 66-76.
    9. Lan Li & Hao Wang & Xiangping Chen & Abid Ali Shah Bukhari & Wenping Cao & Lun Chai & Bing Li, 2019. "High Efficiency Solar Power Generation with Improved Discontinuous Pulse Width Modulation (DPWM) Overmodulation Algorithms," Energies, MDPI, vol. 12(9), pages 1-18, May.
    10. Bretado de los Rios, Mariana Soledad & Rivera-Solorio, Carlos I. & García-Cuéllar, Alejandro J., 2018. "Thermal performance of a parabolic trough linear collector using Al2O3/H2O nanofluids," Renewable Energy, Elsevier, vol. 122(C), pages 665-673.
    11. Yang Liu & Han Yue & Na Wang & Heng Zhang & Haiping Chen, 2020. "Design and Transient Analysis of a Natural Gas-Assisted Solar LCPV/T Trigeneration System," Energies, MDPI, vol. 13(22), pages 1-24, November.
    12. Widyolar, Bennett & Jiang, Lun & Winston, Roland, 2018. "Spectral beam splitting in hybrid PV/T parabolic trough systems for power generation," Applied Energy, Elsevier, vol. 209(C), pages 236-250.
    13. Rahman, Md Momtazur & Khan, Imran & Alameh, Kamal, 2021. "Potential measurement techniques for photovoltaic module failure diagnosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    14. Shakibi, Hamid & Shokri, Afshar & Sobhani, Behnam & Yari, Mortaza, 2023. "Numerical analysis and optimization of a novel photovoltaic thermal solar unit improved by Nano-PCM as an energy storage media and finned collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    15. Oswaldo Menéndez & Robert Guamán & Marcelo Pérez & Fernando Auat Cheein, 2018. "Photovoltaic Modules Diagnosis Using Artificial Vision Techniques for Artifact Minimization," Energies, MDPI, vol. 11(7), pages 1-23, June.
    16. Wilfried van Sark, 2019. "Photovoltaic System Design and Performance," Energies, MDPI, vol. 12(10), pages 1-6, May.
    17. Waqas Ahmed & Muhammad Umair Ali & M. A. Parvez Mahmud & Kamran Ali Khan Niazi & Amad Zafar & Tamas Kerekes, 2023. "A Comparison and Introduction of Novel Solar Panel’s Fault Diagnosis Technique Using Deep-Features Shallow-Classifier through Infrared Thermography," Energies, MDPI, vol. 16(3), pages 1-16, January.
    18. Daneshazarian, Reza & Cuce, Erdem & Cuce, Pinar Mert & Sher, Farooq, 2018. "Concentrating photovoltaic thermal (CPVT) collectors and systems: Theory, performance assessment and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 473-492.
    19. Waqar Akram, M. & Li, Guiqiang & Jin, Yi & Chen, Xiao, 2022. "Failures of Photovoltaic modules and their Detection: A Review," Applied Energy, Elsevier, vol. 313(C).
    20. Manxuan Xiao & Llewellyn Tang & Xingxing Zhang & Isaac Yu Fat Lun & Yanping Yuan, 2018. "A Review on Recent Development of Cooling Technologies for Concentrated Photovoltaics (CPV) Systems," Energies, MDPI, vol. 11(12), pages 1-39, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2967-:d:253689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.