IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i14p2774-d249819.html
   My bibliography  Save this article

Oscillations Analysis of Front-Mounted Beet Topper Machine for Biomass Harvesting

Author

Listed:
  • Volodymyr Bulgakov

    (Department of Mechanics, Faculty of Construction and Design, National University of Life and Environmental Sciences of Ukraine, 03041 Kyiv, Ukraine)

  • Simone Pascuzzi

    (Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via Amendola, 165/A, 70126 Bari, Italy)

  • Alexandros Sotirios Anifantis

    (Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via Amendola, 165/A, 70126 Bari, Italy)

  • Francesco Santoro

    (Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via Amendola, 165/A, 70126 Bari, Italy)

Abstract

The beet leaves and tops, which currently are excluded from the production process of sugar, could be an interesting opportunity for the production of renewable energy. Usually, the defoliators are joined with root collar remover machines, which are installed in front of the tractor. In working conditions on soils having natural roughness these front-mounted beet topper machines carried by tractors are affected by angular oscillations in a longitudinal-vertical plane that strongly affect the cutting uniformity. A theoretical study of these oscillations was carried out in this paper using Lagrange II kind equations, with the aim to assess the design and kinematic parameters of a front-mounted beet topper, corresponding to more stable and suitable movements in the longitudinal-vertical plane. A numerical simulation was then performed adopting the developed mathematical model. In order to improve the efficiency of this harvesting machine, a significant role is assumed by the soil preparation. In this work the stiffness and damping parameters of the feeler wheels pneumatic tires have been considered constant but further studies are in progress to assess their effective importance and influence for reducing the vibration of the front-mounted beet topper machine with the final aim to achieve a better machine design.

Suggested Citation

  • Volodymyr Bulgakov & Simone Pascuzzi & Alexandros Sotirios Anifantis & Francesco Santoro, 2019. "Oscillations Analysis of Front-Mounted Beet Topper Machine for Biomass Harvesting," Energies, MDPI, vol. 12(14), pages 1-14, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2774-:d:249819
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/14/2774/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/14/2774/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Volodymyr Bulgakov & Simone Pascuzzi & Volodymyr Nadykto & Semjons Ivanovs, 2018. "A Mathematical Model of the Plane-Parallel Movement of an Asymmetric Machine-and-Tractor Aggregate," Agriculture, MDPI, vol. 8(10), pages 1-15, October.
    2. Emanuele Cerruto & Giuseppe Manetto & Francesco Santoro & Simone Pascuzzi, 2018. "Operator Dermal Exposure to Pesticides in Tomato and Strawberry Greenhouses from Hand-Held Sprayers," Sustainability, MDPI, vol. 10(7), pages 1-21, July.
    3. Volodymyr Bulgakov & Simone Pascuzzi & Francesco Santoro & Alexandros Sotirios Anifantis, 2018. "Mathematical Model of the Plane-Parallel Movement of the Self-Propelled Root-Harvesting Machine," Sustainability, MDPI, vol. 10(10), pages 1-11, October.
    4. Karol Tucki & Remigiusz Mruk & Olga Orynycz & Arkadiusz Gola, 2019. "The Effects of Pressure and Temperature on the Process of Auto-Ignition and Combustion of Rape Oil and Its Mixtures," Sustainability, MDPI, vol. 11(12), pages 1-17, June.
    5. Alexandros Sotirios Anifantis & Andrea Colantoni & Simone Pascuzzi & Francesco Santoro, 2018. "Photovoltaic and Hydrogen Plant Integrated with a Gas Heat Pump for Greenhouse Heating: A Mathematical Study," Sustainability, MDPI, vol. 10(2), pages 1-12, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simone Pascuzzi & Alexandros Sotirios Anifantis & Francesco Santoro, 2020. "The Concept of a Compact Profile Agricultural Tractor Suitable for Use on Specialised Tree Crops," Agriculture, MDPI, vol. 10(4), pages 1-10, April.
    2. Volodymyr Bulgakov & Simone Pascuzzi & Semjons Ivanovs & Francesco Santoro & Alexandros Sotirios Anifantis & Ievhen Ihnatiev, 2020. "Performance Assessment of Front-Mounted Beet Topper Machine for Biomass Harvesting," Energies, MDPI, vol. 13(14), pages 1-12, July.
    3. Sara Rajabi Hamedani & Mauro Villarini & Andrea Colantoni & Maurizio Carlini & Massimo Cecchini & Francesco Santoro & Antonio Pantaleo, 2020. "Environmental and Economic Analysis of an Anaerobic Co-Digestion Power Plant Integrated with a Compost Plant," Energies, MDPI, vol. 13(11), pages 1-14, May.
    4. Volodymyr Bulgakov & Simone Pascuzzi & Semjons Ivanovs & Zinoviy Ruzhylo & Ivan Fedosiy & Francesco Santoro, 2020. "A New Spiral Potato Cleaner to Enhance the Removal of Impurities and Soil Clods in Potato Harvesting," Sustainability, MDPI, vol. 12(23), pages 1-19, November.
    5. Simone Pascuzzi & Volodymyr Bulgakov & Francesco Santoro & Alexandros Sotirios Anifantis & Semjons Ivanovs & Ivan Holovach, 2020. "A Study on the Drift of Spray Droplets Dipped in Airflows with Different Directions," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    6. Andrea Colantoni & Rodolfo Picchio & Alvaro Marucci & Elena Di Mattia & Valerio Cristofori & Fabio Recanatesi & Mauro Villarini & Danilo Monarca & Massimo Cecchini, 2020. "WP3—Innovation in Agriculture and Forestry Sector for Energetic Sustainability," Energies, MDPI, vol. 13(22), pages 1-7, November.
    7. Antonio Pantaleo & Mauro Villarini & Andrea Colantoni & Maurizio Carlini & Francesco Santoro & Sara Rajabi Hamedani, 2020. "Techno-Economic Modeling of Biomass Pellet Routes: Feasibility in Italy," Energies, MDPI, vol. 13(7), pages 1-15, April.
    8. Artur Przywara & Francesco Santoro & Artur Kraszkiewicz & Anna Pecyna & Simone Pascuzzi, 2020. "Experimental Study of Disc Fertilizer Spreader Performance," Agriculture, MDPI, vol. 10(10), pages 1-11, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Volodymyr Bulgakov & Simone Pascuzzi & Semjons Ivanovs & Zinoviy Ruzhylo & Ivan Fedosiy & Francesco Santoro, 2020. "A New Spiral Potato Cleaner to Enhance the Removal of Impurities and Soil Clods in Potato Harvesting," Sustainability, MDPI, vol. 12(23), pages 1-19, November.
    2. Simone Pascuzzi & Volodymyr Bulgakov & Francesco Santoro & Alexandros Sotirios Anifantis & Semjons Ivanovs & Ivan Holovach, 2020. "A Study on the Drift of Spray Droplets Dipped in Airflows with Different Directions," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    3. Simone Pascuzzi & Alexandros Sotirios Anifantis & Francesco Santoro, 2020. "The Concept of a Compact Profile Agricultural Tractor Suitable for Use on Specialised Tree Crops," Agriculture, MDPI, vol. 10(4), pages 1-10, April.
    4. Volodymyr Bulgakov & Simone Pascuzzi & Semjons Ivanovs & Francesco Santoro & Alexandros Sotirios Anifantis & Ievhen Ihnatiev, 2020. "Performance Assessment of Front-Mounted Beet Topper Machine for Biomass Harvesting," Energies, MDPI, vol. 13(14), pages 1-12, July.
    5. Artur Kraszkiewicz & Artur Przywara & Alexandros Sotirios Anifantis, 2020. "Impact of Ignition Technique on Pollutants Emission during the Combustion of Selected Solid Biofuels," Energies, MDPI, vol. 13(10), pages 1-13, May.
    6. Artur Przywara & Francesco Santoro & Artur Kraszkiewicz & Anna Pecyna & Simone Pascuzzi, 2020. "Experimental Study of Disc Fertilizer Spreader Performance," Agriculture, MDPI, vol. 10(10), pages 1-11, October.
    7. Volodymyr Bulgakov & Simone Pascuzzi & Valerii Adamchuk & Volodymyr Kuvachov & Ladislav Nozdrovicky, 2019. "Theoretical Study of Transverse Offsets of Wide Span Tractor Working Implements and Their Influence on Damage to Row Crops," Agriculture, MDPI, vol. 9(7), pages 1-10, July.
    8. Karol Tucki & Olga Orynycz & Remigiusz Mruk & Antoni Świć & Katarzyna Botwińska, 2019. "Modeling of Biofuel’s Emissivity for Fuel Choice Management," Sustainability, MDPI, vol. 11(23), pages 1-22, December.
    9. Volodymyr Bulgakov & Simone Pascuzzi & Hristo Beloev & Semjons Ivanovs, 2019. "Theoretical Investigations of the Headland Turning Agility of a Trailed Asymmetric Implement-and-Tractor Aggregate," Agriculture, MDPI, vol. 9(10), pages 1-11, October.
    10. Arrigo Salvatore Guerrieri & Alexandros Sotirios Anifantis & Francesco Santoro & Simone Pascuzzi, 2019. "Study of a Large Square Baler with Innovative Technological Systems that Optimize the Baling Effectiveness," Agriculture, MDPI, vol. 9(5), pages 1-8, April.
    11. Oleksandra Shepel & Jonas Matijošius & Alfredas Rimkus & Olga Orynycz & Karol Tucki & Antoni Świć, 2022. "Combustion, Ecological, and Energetic Indicators for Mixtures of Hydrotreated Vegetable Oil (HVO) with Duck Fat Applied as Fuel in a Compression Ignition Engine," Energies, MDPI, vol. 15(21), pages 1-24, October.
    12. Sara Rajabi Hamedani & Mauro Villarini & Andrea Colantoni & Maurizio Carlini & Massimo Cecchini & Francesco Santoro & Antonio Pantaleo, 2020. "Environmental and Economic Analysis of an Anaerobic Co-Digestion Power Plant Integrated with a Compost Plant," Energies, MDPI, vol. 13(11), pages 1-14, May.
    13. Marek Boryga & Paweł Kołodziej & Krzysztof Gołacki, 2020. "Application of Polynomial Transition Curves for Trajectory Planning on the Headlands," Agriculture, MDPI, vol. 10(5), pages 1-16, May.
    14. Shaoqing Xu & Yuru Feng & Leng Han & Xiangkai Ran & Yuan Zhong & Ye Jin & Jianli Song, 2023. "Evaluation of the Wind Field and Deposition Effect of a Novel Air-Assisted Strawberry Sprayer," Agriculture, MDPI, vol. 13(2), pages 1-14, January.
    15. Artur Nemś & Magdalena Nemś & Klaudia Świder, 2018. "Analysis of the Possibilities of Using a Heat Pump for Greenhouse Heating in Polish Climatic Conditions—A Case Study," Sustainability, MDPI, vol. 10(10), pages 1-23, September.
    16. James Bambara & Andreas K. Athienitis & Ursula Eicker, 2021. "Decarbonizing Local Mobility and Greenhouse Agriculture through Residential Building Energy Upgrades: A Case Study for Québec," Energies, MDPI, vol. 14(20), pages 1-31, October.
    17. Olga Orynycz & Karol Tucki & Miron Prystasz, 2020. "Implementation of Lean Management as a Tool for Decrease of Energy Consumption and CO 2 Emissions in the Fast Food Restaurant," Energies, MDPI, vol. 13(5), pages 1-26, March.
    18. Dariusz Mikielewicz & Krzysztof Kosowski & Karol Tucki & Marian Piwowarski & Robert Stępień & Olga Orynycz & Wojciech Włodarski, 2019. "Gas Turbine Cycle with External Combustion Chamber for Prosumer and Distributed Energy Systems," Energies, MDPI, vol. 12(18), pages 1-19, September.
    19. Alexandros Sotirios Anifantis & Salvatore Camposeo & Gaetano Alessandro Vivaldi & Francesco Santoro & Simone Pascuzzi, 2019. "Comparison of UAV Photogrammetry and 3D Modeling Techniques with Other Currently Used Methods for Estimation of the Tree Row Volume of a Super-High-Density Olive Orchard," Agriculture, MDPI, vol. 9(11), pages 1-14, October.
    20. José Ignacio Rojas-Sola & Gloria del Río-Cidoncha & Ángel Coronil-García, 2020. "Industrial Archaeology Applied to the Study of an Ancient Harvesting Machine: Three-Dimensional Modelling and Virtual Reconstruction," Agriculture, MDPI, vol. 10(8), pages 1-23, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2774-:d:249819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.