IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i12p2325-d240714.html
   My bibliography  Save this article

Tuning of Controllers in Power Systems Using a Heuristic-Stochastic Approach

Author

Listed:
  • Humberto Verdejo

    (Department of Electrical Engineering, Universidad de Santiago de Chile, Santiago 9170124, Chile
    These authors contributed equally to this work.)

  • Rodrigo Torres

    (Department of Electrical Engineering, Universidad de Santiago de Chile, Santiago 9170124, Chile
    These authors contributed equally to this work.)

  • Victor Pino

    (Department of Electrical Engineering, Universidad de Santiago de Chile, Santiago 9170124, Chile
    These authors contributed equally to this work.)

  • Wolfgang Kliemann

    (Department of Mathematics, Iowa State University, Ames, IA 50011, USA)

  • Cristhian Becker

    (Department of Electrical Engineering, Universidad de Santiago de Chile, Santiago 9170124, Chile
    These authors contributed equally to this work.)

  • José Delpiano

    (School of Engineering and Applied Sciences, Universidad de los Andes, Santiago 7620001, Chile
    Advanced Center for Electrical and Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso 2390212, Chile)

Abstract

A method is proposed to fit parameters of Power System Stabilizer controllers in electromechanical multimachine power systems. The use of the Non-dominated Sorting Genetic Algorithm II heuristic method and Tabu search is considered to be initial search criteria. These methods give an approximation of the values that define the controllers. Then, the stochastic approach was used to evaluate the behavior of the parameters found when considering the system’s response to the presence of random and self-sustained in-time disturbances that affect the response of the system under steady state. The stochastic approach allows the evaluation of the system’s response through the calculation of the cost of energy loss under steady state. The method is applied to two systems: a three-machine nine-busbar system, and the Interconnected System of the Greater North (Sistema Interconectado del Norte Grande) in Chile. For these systems, the proposed methodology effectively optimized the controllers and Tabu search was shown to have a better performance than the Non-dominated Sorting Genetic Algorithm II.

Suggested Citation

  • Humberto Verdejo & Rodrigo Torres & Victor Pino & Wolfgang Kliemann & Cristhian Becker & José Delpiano, 2019. "Tuning of Controllers in Power Systems Using a Heuristic-Stochastic Approach," Energies, MDPI, vol. 12(12), pages 1-25, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2325-:d:240714
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/12/2325/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/12/2325/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arora, Ranjana & Kaushik, S.C. & Arora, Rajesh, 2015. "Multi-objective and multi-parameter optimization of two-stage thermoelectric generator in electrically series and parallel configurations through NSGA-II," Energy, Elsevier, vol. 91(C), pages 242-254.
    2. Fotouhi Ghazvini, Mohammad Ali & Soares, João & Horta, Nuno & Neves, Rui & Castro, Rui & Vale, Zita, 2015. "A multi-objective model for scheduling of short-term incentive-based demand response programs offered by electricity retailers," Applied Energy, Elsevier, vol. 151(C), pages 102-118.
    3. Derafshian, Mehdi & Amjady, Nima, 2015. "Optimal design of power system stabilizer for power systems including doubly fed induction generator wind turbines," Energy, Elsevier, vol. 84(C), pages 1-14.
    4. Hu, Yuan & Bie, Zhaohong & Ding, Tao & Lin, Yanling, 2016. "An NSGA-II based multi-objective optimization for combined gas and electricity network expansion planning," Applied Energy, Elsevier, vol. 167(C), pages 280-293.
    5. Li, Fang-Fang & Qiu, Jun, 2016. "Multi-objective optimization for integrated hydro–photovoltaic power system," Applied Energy, Elsevier, vol. 167(C), pages 377-384.
    6. Khan, Muhammad Waqas & Choudhry, Mohammad Ahmad & Zeeshan, Muhammad & Ali, Ahsan, 2015. "Adaptive fuzzy multivariable controller design based on genetic algorithm for an air handling unit," Energy, Elsevier, vol. 81(C), pages 477-488.
    7. Boyaghchi, Fateme Ahmadi & Molaie, Hanieh, 2015. "Advanced exergy and environmental analyses and multi objective optimization of a real combined cycle power plant with supplementary firing using evolutionary algorithm," Energy, Elsevier, vol. 93(P2), pages 2267-2279.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aliyu Sabo & Bashir Yunus Kolapo & Theophilus Ebuka Odoh & Musa Dyari & Noor Izzri Abdul Wahab & Veerapandiyan Veerasamy, 2022. "Solar, Wind and Their Hybridization Integration for Multi-Machine Power System Oscillation Controllers Optimization: A Review," Energies, MDPI, vol. 16(1), pages 1-32, December.
    2. Predrag Marić & Ružica Kljajić & Harold R. Chamorro & Hrvoje Glavaš, 2021. "Power System Stabilizer Tuning Algorithm in a Multimachine System Based on S-Domain and Time Domain System Performance Measures," Energies, MDPI, vol. 14(18), pages 1-30, September.
    3. Abdul Waheed Khawaja & Nor Azwan Mohamed Kamari & Muhammad Ammirrul Atiqi Mohd Zainuri, 2021. "Design of a Damping Controller Using the SCA Optimization Technique for the Improvement of Small Signal Stability of a Single Machine Connected to an Infinite Bus System," Energies, MDPI, vol. 14(11), pages 1-20, May.
    4. Aliyu Sabo & Noor Izzri Abdul Wahab & Mohammad Lutfi Othman & Mai Zurwatul Ahlam Mohd Jaffar & Hakan Acikgoz & Hamzeh Beiranvand, 2020. "Application of Neuro-Fuzzy Controller to Replace SMIB and Interconnected Multi-Machine Power System Stabilizers," Sustainability, MDPI, vol. 12(22), pages 1-42, November.
    5. Michał Izdebski & Robert Małkowski & Piotr Miller, 2022. "New Performance Indices for Power System Stabilizers," Energies, MDPI, vol. 15(24), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Qian & Du, Wen-Jing & Cheng, Lin, 2017. "Optimization design of heat recovery systems on rotary kilns using genetic algorithms," Applied Energy, Elsevier, vol. 202(C), pages 153-168.
    2. Zhang, Shenxi & Cheng, Haozhong & Li, Ke & Tai, Nengling & Wang, Dan & Li, Furong, 2018. "Multi-objective distributed generation planning in distribution network considering correlations among uncertainties," Applied Energy, Elsevier, vol. 226(C), pages 743-755.
    3. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    4. Meng, Fankai & Chen, Lingen & Feng, Yuanli & Xiong, Bing, 2017. "Thermoelectric generator for industrial gas phase waste heat recovery," Energy, Elsevier, vol. 135(C), pages 83-90.
    5. Ahmadi, Mohammad H. & Amin Nabakhteh, Mohammad & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah & Bidi, Mokhtar, 2017. "Investigation and optimization of performance of nano-scale Stirling refrigerator using working fluid as Maxwell–Boltzmann gases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 337-350.
    6. Afzali, Sayyed Faridoddin & Mahalec, Vladimir, 2017. "Optimal design, operation and analytical criteria for determining optimal operating modes of a CCHP with fired HRSG, boiler, electric chiller and absorption chiller," Energy, Elsevier, vol. 139(C), pages 1052-1065.
    7. Mahmoudimehr, Javad & Shabani, Masoume, 2018. "Optimal design of hybrid photovoltaic-hydroelectric standalone energy system for north and south of Iran," Renewable Energy, Elsevier, vol. 115(C), pages 238-251.
    8. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    9. Lisicki, Michal & Lubitz, William & Taylor, Graham W., 2016. "Optimal design and operation of Archimedes screw turbines using Bayesian optimization," Applied Energy, Elsevier, vol. 183(C), pages 1404-1417.
    10. Fontecha, John E. & Nikolaev, Alexander & Walteros, Jose L. & Zhu, Zhenduo, 2022. "Scientists wanted? A literature review on incentive programs that promote pro-environmental consumer behavior: Energy, waste, and water," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    11. Ge, Ya & Liu, Zhichun & Sun, Henan & Liu, Wei, 2018. "Optimal design of a segmented thermoelectric generator based on three-dimensional numerical simulation and multi-objective genetic algorithm," Energy, Elsevier, vol. 147(C), pages 1060-1069.
    12. Xiaofeng Liu & Qi Wang & Wenting Wang, 2019. "Evolutionary Analysis for Residential Consumer Participating in Demand Response Considering Irrational Behavior," Energies, MDPI, vol. 12(19), pages 1-19, September.
    13. Hongkun Lv & Guoneng Li & Youqu Zheng & Jiangen Hu & Jian Li, 2018. "Compact Water-Cooled Thermoelectric Generator (TEG) Based on a Portable Gas Stove," Energies, MDPI, vol. 11(9), pages 1-19, August.
    14. Menéndez, Javier & Loredo, Jorge & Galdo, Mónica & Fernández-Oro, Jesús M., 2019. "Energy storage in underground coal mines in NW Spain: Assessment of an underground lower water reservoir and preliminary energy balance," Renewable Energy, Elsevier, vol. 134(C), pages 1381-1391.
    15. Jiang, Yibo & Xu, Jian & Sun, Yuanzhang & Wei, Congying & Wang, Jing & Liao, Siyang & Ke, Deping & Li, Xiong & Yang, Jun & Peng, Xiaotao, 2018. "Coordinated operation of gas-electricity integrated distribution system with multi-CCHP and distributed renewable energy sources," Applied Energy, Elsevier, vol. 211(C), pages 237-248.
    16. Behboodi, Sahand & Chassin, David P. & Djilali, Ned & Crawford, Curran, 2018. "Transactive control of fast-acting demand response based on thermostatic loads in real-time retail electricity markets," Applied Energy, Elsevier, vol. 210(C), pages 1310-1320.
    17. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    18. Chen, J.F. & Zhang, L. & Dai, Y.J., 2018. "Performance analysis and multi-objective optimization of a hybrid photovoltaic/thermal collector for domestic hot water application," Energy, Elsevier, vol. 143(C), pages 500-516.
    19. Ming, Bo & Liu, Pan & Guo, Shenglian & Cheng, Lei & Zhou, Yanlai & Gao, Shida & Li, He, 2018. "Robust hydroelectric unit commitment considering integration of large-scale photovoltaic power: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1341-1352.
    20. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2325-:d:240714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.