IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i10p1900-d232339.html
   My bibliography  Save this article

Impact of a Periodic Power Source on a RES Microgrid

Author

Listed:
  • Angelos Angelopoulos

    (Energy Systems Laboratory, National & Kapodistrian University of Athens, 34400 Evia, Greece)

  • Aphrodite Ktena

    (Energy Systems Laboratory, National & Kapodistrian University of Athens, 34400 Evia, Greece)

  • Christos Manasis

    (Energy Systems Laboratory, National & Kapodistrian University of Athens, 34400 Evia, Greece)

  • Stamatis Voliotis

    (Energy Systems Laboratory, National & Kapodistrian University of Athens, 34400 Evia, Greece)

Abstract

The aim of this article is to highlight the impact of a periodic power source, such as a tidal turbine, on the operation and sizing of an autonomous hybrid microgrid with photovoltaic panels and storage. The technique of hill climbing (repeated local search) is used to find the optimum combination of Renewable Energy Sources (RES) and storage units with respect to the required capital cost for various load curves and weather conditions. To model the operation of the microgrid devices, analytical and phenomenological models, have been used, which take into account the specifications of actual commercial devices. Six different case studies are presented, with and without a tidal generator, which are based on six different sets of electrical consumption data corresponding to the Euripus campus of the National & Kapodistrian University of Athens (NKUA) in Psachna, Evia, Greece, and respective meteorological and tidal current data from the region. The results show that tidal energy may be used in a RES microgrid, where applicable, to satisfy the base load requirements, leading to a reduction in installed capacities of intermittent RES and storage, accompanied with cost reduction, especially in cases where a high load factor is observed or may be achieved, through demand response mechanisms. Such a hybrid microgrid configuration may be appropriate for regions where low velocity tidal and marine currents exist along with substantial solar and/or wind energy potential, such as the Mediterranean coast line and islands.

Suggested Citation

  • Angelos Angelopoulos & Aphrodite Ktena & Christos Manasis & Stamatis Voliotis, 2019. "Impact of a Periodic Power Source on a RES Microgrid," Energies, MDPI, vol. 12(10), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1900-:d:232339
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/10/1900/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/10/1900/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hakimi, S.M. & Moghaddas-Tafreshi, S.M., 2009. "Optimal sizing of a stand-alone hybrid power system via particle swarm optimization for Kahnouj area in south-east of Iran," Renewable Energy, Elsevier, vol. 34(7), pages 1855-1862.
    2. Obara, Shin’ya & Kawai, Masahito & Kawae, Osamu & Morizane, Yuta, 2013. "Operational planning of an independent microgrid containing tidal power generators, SOFCs, and photovoltaics," Applied Energy, Elsevier, vol. 102(C), pages 1343-1357.
    3. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.
    4. Sinha, Sunanda & Chandel, S.S., 2015. "Review of recent trends in optimization techniques for solar photovoltaic–wind based hybrid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 755-769.
    5. Javidsharifi, Mahshid & Niknam, Taher & Aghaei, Jamshid & Mokryani, Geev, 2018. "Multi-objective short-term scheduling of a renewable-based microgrid in the presence of tidal resources and storage devices," Applied Energy, Elsevier, vol. 216(C), pages 367-381.
    6. Kanase-Patil, A.B. & Saini, R.P. & Sharma, M.P., 2010. "Integrated renewable energy systems for off grid rural electrification of remote area," Renewable Energy, Elsevier, vol. 35(6), pages 1342-1349.
    7. Ashok, S., 2007. "Optimised model for community-based hybrid energy system," Renewable Energy, Elsevier, vol. 32(7), pages 1155-1164.
    8. Kaabeche, A. & Belhamel, M. & Ibtiouen, R., 2011. "Sizing optimization of grid-independent hybrid photovoltaic/wind power generation system," Energy, Elsevier, vol. 36(2), pages 1214-1222.
    9. Jing Li & Wei Wei & Ji Xiang, 2012. "A Simple Sizing Algorithm for Stand-Alone PV/Wind/Battery Hybrid Microgrids," Energies, MDPI, vol. 5(12), pages 1-17, December.
    10. Shivarama Krishna, K. & Sathish Kumar, K., 2015. "A review on hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 907-916.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. George Stamatellos & Tassos Stamatelos, 2023. "Study of an nZEB Office Building with Storage in Electric Vehicle Batteries and Dispatch of a Natural Gas-Fuelled Generator," Energies, MDPI, vol. 16(7), pages 1-20, April.
    2. George Stamatellos & Olympia Zogou & Anastassios Stamatelos, 2021. "Energy Performance Optimization of a House with Grid-Connected Rooftop PV Installation and Air Source Heat Pump," Energies, MDPI, vol. 14(3), pages 1-23, January.
    3. Yuichiro Yoshida & Hooman Farzaneh, 2020. "Optimal Design of a Stand-Alone Residential Hybrid Microgrid System for Enhancing Renewable Energy Deployment in Japan," Energies, MDPI, vol. 13(7), pages 1-18, April.
    4. Rajvikram Madurai Elavarasan & Aritra Ghosh & Tapas K. Mallick & Apoorva Krishnamurthy & Meenal Saravanan, 2019. "Investigations on Performance Enhancement Measures of the Bidirectional Converter in PV–Wind Interconnected Microgrid System," Energies, MDPI, vol. 12(14), pages 1-22, July.
    5. Christos Manasis & Nicholas Assimakis & Vasilis Vikias & Aphrodite Ktena & Tassos Stamatelos, 2020. "Power Generation Prediction of an Open Cycle Gas Turbine Using Kalman Filter," Energies, MDPI, vol. 13(24), pages 1-15, December.
    6. George Stamatellos & Olympia Zogou & Anastassios Stamatelos, 2022. "Energy Analysis of a NZEB Office Building with Rooftop PV Installation: Exploitation of the Employees’ Electric Vehicles Battery Storage," Energies, MDPI, vol. 15(17), pages 1-24, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.
    2. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    3. Perera, A.T.D. & Attalage, R.A. & Perera, K.K.C.K. & Dassanayake, V.P.C., 2013. "Designing standalone hybrid energy systems minimizing initial investment, life cycle cost and pollutant emission," Energy, Elsevier, vol. 54(C), pages 220-230.
    4. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    5. Rahmat Khezri & Amin Mahmoudi & Hirohisa Aki & S. M. Muyeen, 2021. "Optimal Planning of Remote Area Electricity Supply Systems: Comprehensive Review, Recent Developments and Future Scopes," Energies, MDPI, vol. 14(18), pages 1-29, September.
    6. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    7. Pablo Benalcazar & Adam Suski & Jacek Kamiński, 2020. "Optimal Sizing and Scheduling of Hybrid Energy Systems: The Cases of Morona Santiago and the Galapagos Islands," Energies, MDPI, vol. 13(15), pages 1-20, August.
    8. José Luis Torres-Madroñero & Joham Alvarez-Montoya & Daniel Restrepo-Montoya & Jorge Mario Tamayo-Avendaño & César Nieto-Londoño & Julián Sierra-Pérez, 2020. "Technological and Operational Aspects That Limit Small Wind Turbines Performance," Energies, MDPI, vol. 13(22), pages 1-39, November.
    9. Tezer, Tuba & Yaman, Ramazan & Yaman, Gülşen, 2017. "Evaluation of approaches used for optimization of stand-alone hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 840-853.
    10. Maleki, Akbar & Pourfayaz, Fathollah & Rosen, Marc A., 2016. "A novel framework for optimal design of hybrid renewable energy-based autonomous energy systems: A case study for Namin, Iran," Energy, Elsevier, vol. 98(C), pages 168-180.
    11. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2018. "Battery energy storage system size determination in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 109-125.
    12. Sawle, Yashwant & Gupta, S.C. & Bohre, Aashish Kumar, 2018. "Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2217-2235.
    13. Seyfettin Vadi & Sanjeevikumar Padmanaban & Ramazan Bayindir & Frede Blaabjerg & Lucian Mihet-Popa, 2019. "A Review on Optimization and Control Methods Used to Provide Transient Stability in Microgrids," Energies, MDPI, vol. 12(18), pages 1-20, September.
    14. Augusto Montisci & Marco Caredda, 2021. "A Static Hybrid Renewable Energy System for Off-Grid Supply," Sustainability, MDPI, vol. 13(17), pages 1-16, August.
    15. Akikur, R.K. & Saidur, R. & Ping, H.W. & Ullah, K.R., 2013. "Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 738-752.
    16. Anoune, Kamal & Bouya, Mohsine & Astito, Abdelali & Abdellah, Abdellatif Ben, 2018. "Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 652-673.
    17. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    18. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    19. Apfel, Dorothee & Haag, Steffen & Herbes, Carsten, 2021. "Research agendas on renewable energies in the Global South: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    20. Rajanna, S. & Saini, R.P., 2016. "Modeling of integrated renewable energy system for electrification of a remote area in India," Renewable Energy, Elsevier, vol. 90(C), pages 175-187.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1900-:d:232339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.