IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i10p1844-d231353.html
   My bibliography  Save this article

Economic and Environmental Optimization for Distributed Energy System Integrated with District Energy Network

Author

Listed:
  • Miao Li

    (School of Mechanical Engineering and Automation, Dalian Polytechnic University, Dalian 116034, China)

  • Yiran Feng

    (School of Mechanical Engineering and Automation, Dalian Polytechnic University, Dalian 116034, China)

  • Maojun Zhou

    (School of Mechanical Engineering and Automation, Dalian Polytechnic University, Dalian 116034, China)

  • Hailin Mu

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China)

  • Longxi Li

    (School of Economics and Management, China University of Geosciences, Wuhan 430074, China)

  • Yajun Wang

    (School of Mechanical Engineering and Automation, Dalian Polytechnic University, Dalian 116034, China)

Abstract

The purpose of this research is to develop a mixed integer linear programming model for optimization of a distributed energy system integrated with electricity network. In this model, the optimal configuration of the selected equipment and dynamic intelligent control of the hourly electricity interchange among end-users were determined. The multi-objective function was to maximize the total cost saving and pollutant emission reduction. As an illustrative example, the model was applied to a neighborhood level containing hotel, office and residential buildings in Dalian, China. According to the results, with the installation of the electricity network, the load rate of the power generating unit in the hotel and office were improved and the power generate unit (PGU) often operated at full loads during the daytime with the surplus electricity distributed to the residential buildings. Furthermore, the overall performance was enhanced leading to a more than 30–40% reduction compared to the only distributed energy system (20–30%). In addition, the advancement of the electricity network was reflected in its application in office, where most of the excess electricity is transferred from office to residential building during the daytime in winter, while during the night time, the phenomenon was reversed, so that the office received electricity from residential buildings and no generated unit was at work in office.

Suggested Citation

  • Miao Li & Yiran Feng & Maojun Zhou & Hailin Mu & Longxi Li & Yajun Wang, 2019. "Economic and Environmental Optimization for Distributed Energy System Integrated with District Energy Network," Energies, MDPI, vol. 12(10), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1844-:d:231353
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/10/1844/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/10/1844/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Xuezhi & Wu, Jianzhong & Jenkins, Nick & Bagdanavicius, Audrius, 2016. "Combined analysis of electricity and heat networks," Applied Energy, Elsevier, vol. 162(C), pages 1238-1250.
    2. Xiaohua Song & Mengdi Shu & Yimeng Wei & Jinpeng Liu, 2018. "A Study on the Multi-Agent Based Comprehensive Benefits Simulation Analysis and Synergistic Optimization Strategy of Distributed Energy in China," Energies, MDPI, vol. 11(12), pages 1-21, November.
    3. Wang, Jiangjiang & Zhai, Zhiqiang John & Zhang, Chunfa & Jing, Youyin, 2010. "Environmental impact analysis of BCHP system in different climate zones in China," Energy, Elsevier, vol. 35(10), pages 4208-4216.
    4. Ebrahimi, Masood & Keshavarz, Ali, 2013. "Sizing the prime mover of a residential micro-combined cooling heating and power (CCHP) system by multi-criteria sizing method for different climates," Energy, Elsevier, vol. 54(C), pages 291-301.
    5. Varasteh, Farid & Nazar, Mehrdad Setayesh & Heidari, Alireza & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Distributed energy resource and network expansion planning of a CCHP based active microgrid considering demand response programs," Energy, Elsevier, vol. 172(C), pages 79-105.
    6. Kang, Jing & Wang, Shengwei & Yan, Chengchu, 2019. "A new distributed energy system configuration for cooling dominated districts and the performance assessment based on real site measurements," Renewable Energy, Elsevier, vol. 131(C), pages 390-403.
    7. Zahedi, A., 2011. "Maximizing solar PV energy penetration using energy storage technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 866-870, January.
    8. Rieder, Andreas & Christidis, Andreas & Tsatsaronis, George, 2014. "Multi criteria dynamic design optimization of a small scale distributed energy system," Energy, Elsevier, vol. 74(C), pages 230-239.
    9. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing & Lao, Changshi, 2017. "Profit allocation analysis among the distributed energy network participants based on Game-theory," Energy, Elsevier, vol. 118(C), pages 783-794.
    10. Bharath Varsh Rao & Friederich Kupzog & Martin Kozek, 2018. "Phase Balancing Home Energy Management System Using Model Predictive Control," Energies, MDPI, vol. 11(12), pages 1-19, November.
    11. Lesser, Jonathan A. & Su, Xuejuan, 2008. "Design of an economically efficient feed-in tariff structure for renewable energy development," Energy Policy, Elsevier, vol. 36(3), pages 981-990, March.
    12. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2011. "Influence analysis of building types and climate zones on energetic, economic and environmental performances of BCHP systems," Applied Energy, Elsevier, vol. 88(9), pages 3097-3112.
    13. Sameti, Mohammad & Haghighat, Fariborz, 2019. "Optimization of 4th generation distributed district heating system: Design and planning of combined heat and power," Renewable Energy, Elsevier, vol. 130(C), pages 371-387.
    14. Fumo, Nelson & Mago, Pedro J. & Chamra, Louay M., 2009. "Emission operational strategy for combined cooling, heating, and power systems," Applied Energy, Elsevier, vol. 86(11), pages 2344-2350, November.
    15. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhai, Zhiqiang (John), 2011. "Performance comparison of combined cooling heating and power system in different operation modes," Applied Energy, Elsevier, vol. 88(12), pages 4621-4631.
    16. Mehleri, E.D. & Sarimveis, H. & Markatos, N.C. & Papageorgiou, L.G., 2013. "Optimal design and operation of distributed energy systems: Application to Greek residential sector," Renewable Energy, Elsevier, vol. 51(C), pages 331-342.
    17. Obara, Shin’ya & morizane, Yuta & Morel, Jorge, 2013. "A study of small-scale energy networks of the Japanese Syowa Base in Antarctica by distributed engine generators," Applied Energy, Elsevier, vol. 111(C), pages 113-128.
    18. Li, Longxi & Mu, Hailin & Li, Nan & Li, Miao, 2016. "Economic and environmental optimization for distributed energy resource systems coupled with district energy networks," Energy, Elsevier, vol. 109(C), pages 947-960.
    19. Li, Miao & Mu, Hailin & Li, Nan & Ma, Baoyu, 2016. "Optimal design and operation strategy for integrated evaluation of CCHP (combined cooling heating and power) system," Energy, Elsevier, vol. 99(C), pages 202-220.
    20. Jing, You-Yin & Bai, He & Wang, Jiang-Jiang, 2012. "Multi-objective optimization design and operation strategy analysis of BCHP system based on life cycle assessment," Energy, Elsevier, vol. 37(1), pages 405-416.
    21. Mehleri, Eugenia D. & Sarimveis, Haralambos & Markatos, Nikolaos C. & Papageorgiou, Lazaros G., 2012. "A mathematical programming approach for optimal design of distributed energy systems at the neighbourhood level," Energy, Elsevier, vol. 44(1), pages 96-104.
    22. Yang, Yun & Zhang, Shijie & Xiao, Yunhan, 2015. "Optimal design of distributed energy resource systems coupled with energy distribution networks," Energy, Elsevier, vol. 85(C), pages 433-448.
    23. Liu, Mingxi & Shi, Yang & Fang, Fang, 2012. "A new operation strategy for CCHP systems with hybrid chillers," Applied Energy, Elsevier, vol. 95(C), pages 164-173.
    24. Antimo Barbato & Antonio Capone, 2014. "Optimization Models and Methods for Demand-Side Management of Residential Users: A Survey," Energies, MDPI, vol. 7(9), pages 1-38, September.
    25. Steen, David & Stadler, Michael & Cardoso, Gonçalo & Groissböck, Markus & DeForest, Nicholas & Marnay, Chris, 2015. "Modeling of thermal storage systems in MILP distributed energy resource models," Applied Energy, Elsevier, vol. 137(C), pages 782-792.
    26. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing, 2016. "Multi-objective optimization of a distributed energy network integrated with heating interchange," Energy, Elsevier, vol. 109(C), pages 353-364.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steffen Wehkamp & Lucas Schmeling & Lena Vorspel & Fabian Roelcke & Kai-Lukas Windmeier, 2020. "District Energy Systems: Challenges and New Tools for Planning and Evaluation," Energies, MDPI, vol. 13(11), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing, 2016. "Multi-objective optimization of a distributed energy network integrated with heating interchange," Energy, Elsevier, vol. 109(C), pages 353-364.
    2. Li, Miao & Mu, Hailin & Li, Nan & Ma, Baoyu, 2016. "Optimal design and operation strategy for integrated evaluation of CCHP (combined cooling heating and power) system," Energy, Elsevier, vol. 99(C), pages 202-220.
    3. Urban, Kristof L. & Scheller, Fabian & Bruckner, Thomas, 2021. "Suitability assessment of models in the industrial energy system design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Han, Jie & Ouyang, Leixin & Xu, Yuzhen & Zeng, Rong & Kang, Shushuo & Zhang, Guoqiang, 2016. "Current status of distributed energy system in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 288-297.
    5. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing & Lao, Changshi, 2017. "Profit allocation analysis among the distributed energy network participants based on Game-theory," Energy, Elsevier, vol. 118(C), pages 783-794.
    6. Li, Longxi & Mu, Hailin & Gao, Weijun & Li, Miao, 2014. "Optimization and analysis of CCHP system based on energy loads coupling of residential and office buildings," Applied Energy, Elsevier, vol. 136(C), pages 206-216.
    7. Ren, Fukang & Wei, Ziqing & Zhai, Xiaoqiang, 2022. "A review on the integration and optimization of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    8. Morvaj, Boran & Evins, Ralph & Carmeliet, Jan, 2016. "Optimising urban energy systems: Simultaneous system sizing, operation and district heating network layout," Energy, Elsevier, vol. 116(P1), pages 619-636.
    9. Cho, Heejin & Smith, Amanda D. & Mago, Pedro, 2014. "Combined cooling, heating and power: A review of performance improvement and optimization," Applied Energy, Elsevier, vol. 136(C), pages 168-185.
    10. Farahnak, Mehdi & Farzaneh-Gord, Mahmood & Deymi-Dashtebayaz, Mahdi & Dashti, Farshad, 2015. "Optimal sizing of power generation unit capacity in ICE-driven CCHP systems for various residential building sizes," Applied Energy, Elsevier, vol. 158(C), pages 203-219.
    11. Tian, Zhe & Niu, Jide & Lu, Yakai & He, Shunming & Tian, Xue, 2016. "The improvement of a simulation model for a distributed CCHP system and its influence on optimal operation cost and strategy," Applied Energy, Elsevier, vol. 165(C), pages 430-444.
    12. Wang, Jiang-Jiang & Fu, Chao & Yang, Kun & Zhang, Xu-Tao & Shi, Guo-hua & Zhai, John, 2013. "Reliability and availability analysis of redundant BCHP (building cooling, heating and power) system," Energy, Elsevier, vol. 61(C), pages 531-540.
    13. Gao, Jiajia & Kang, Jing & Zhang, Chong & Gang, Wenjie, 2018. "Energy performance and operation characteristics of distributed energy systems with district cooling systems in subtropical areas under different control strategies," Energy, Elsevier, vol. 153(C), pages 849-860.
    14. Mirko M. Stojiljković & Mladen M. Stojiljković & Bratislav D. Blagojević, 2014. "Multi-Objective Combinatorial Optimization of Trigeneration Plants Based on Metaheuristics," Energies, MDPI, vol. 7(12), pages 1-28, December.
    15. Li, Ruonan & Mhaskar, Prashant & Mahalec, Vladimir, 2021. "Integration of energy systems for buildings and light industrial plants," Energy, Elsevier, vol. 233(C).
    16. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    17. Zhigang Duan & Yamin Yan & Xiaohan Yan & Qi Liao & Wan Zhang & Yongtu Liang & Tianqi Xia, 2017. "An MILP Method for Design of Distributed Energy Resource System Considering Stochastic Energy Supply and Demand," Energies, MDPI, vol. 11(1), pages 1-23, December.
    18. Li, Yaohong & Tian, Ran & Wei, Mingshan, 2022. "Operation strategy for interactive CCHP system based on energy complementary characteristics of diverse operation strategies," Applied Energy, Elsevier, vol. 310(C).
    19. Wang, Jiangjiang & Yang, Ying & Mao, Tianzhi & Sui, Jun & Jin, Hongguang, 2015. "Life cycle assessment (LCA) optimization of solar-assisted hybrid CCHP system," Applied Energy, Elsevier, vol. 146(C), pages 38-52.
    20. Morvaj, Boran & Evins, Ralph & Carmeliet, Jan, 2016. "Optimization framework for distributed energy systems with integrated electrical grid constraints," Applied Energy, Elsevier, vol. 171(C), pages 296-313.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1844-:d:231353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.