IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2018i1p13-d192320.html
   My bibliography  Save this article

Sustainable Renewable Energy by Means of Using Residual Forest Biomass

Author

Listed:
  • Esperanza Mateos

    (Department of Chemical and Environmental Engineering, University of the Basque Country UPV/EHU Rafael Moreno ‘Pitxitxi’, n 3, 48013 Bilbao, Spain)

  • Leyre Ormaetxea

    (Department of Mathematics, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain)

Abstract

The substitution of energy based on fossil fuel by bioenergy could be an effective solution to reduce external energy dependency, thereby promoting sustainable development. This article details a study of the use of biomass residues produced in the forestry sector as a consequence of field operations of the two predominant forest species ( Pinus radiata D. Don and Ecualyptus globulus Labill) of Biscay (Spain). The potential of forest residues is estimated to be 66,600 dry Mg year − 1 . These residues would provide 1307 TJ year − 1 . Energy parameters, ultimate and proximate analyses, and the level of emissions of the forest residues are performed in order to estimate their characteristics as fuel. The research done has shown very similar values in terms of the net calorific value of the residues of P. radiata (19.45 MJ kg − 1 ) and E. globulus (19.48 MJ kg − 1 ). The determined emission factors indicate a reduction in gas emissions: CO (23–25%), CO 2 (22–25%), SO 2 (87–91%) and dust (11–38%) and an increase of 11–37% in NO x compared to hard coal. Estimation of the emission factors of the residual biomass allows the environmental impacts, that are potentially produced by biofuel, to be estimated.

Suggested Citation

  • Esperanza Mateos & Leyre Ormaetxea, 2018. "Sustainable Renewable Energy by Means of Using Residual Forest Biomass," Energies, MDPI, vol. 12(1), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:13-:d:192320
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/1/13/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/1/13/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fournel, S. & Palacios, J.H. & Morissette, R. & Villeneuve, J. & Godbout, S. & Heitz, M. & Savoie, P., 2015. "Influence of biomass properties on technical and environmental performance of a multi-fuel boiler during on-farm combustion of energy crops," Applied Energy, Elsevier, vol. 141(C), pages 247-259.
    2. Kalt, Gerald & Kranzl, Lukas, 2011. "Assessing the economic efficiency of bioenergy technologies in climate mitigation and fossil fuel replacement in Austria using a techno-economic approach," Applied Energy, Elsevier, vol. 88(11), pages 3665-3684.
    3. Torres, Arturo Balderas & Marchant, Rob & Lovett, Jon C. & Smart, James C.R. & Tipper, Richard, 2010. "Analysis of the carbon sequestration costs of afforestation and reforestation agroforestry practices and the use of cost curves to evaluate their potential for implementation of climate change mitigat," Ecological Economics, Elsevier, vol. 69(3), pages 469-477, January.
    4. Grzegorz Maj, 2018. "Emission Factors and Energy Properties of Agro and Forest Biomass in Aspect of Sustainability of Energy Sector," Energies, MDPI, vol. 11(6), pages 1-12, June.
    5. Helder Filipe dos Santos Viana & Abel Martins Rodrigues & Radu Godina & João Carlos de Oliveira Matias & Leonel Jorge Ribeiro Nunes, 2018. "Evaluation of the Physical, Chemical and Thermal Properties of Portuguese Maritime Pine Biomass," Sustainability, MDPI, vol. 10(8), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raquel Fernández-González & Félix Puime Guillén & Otilia Manta & Simona Andreea Apostu & Valentina Vasile, 2022. "Forest Management Communities’ Participation in Bioenergy Production Initiatives: A Case Study for Galicia (Spain)," Energies, MDPI, vol. 15(19), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Galina Nyashina & Pavel Strizhak, 2018. "Impact of Forest Fuels on Gas Emissions in Coal Slurry Fuel Combustion," Energies, MDPI, vol. 11(9), pages 1-16, September.
    2. Wang, Zhiwei & Lei, Tingzhou & Chang, Xia & Shi, Xinguang & Xiao, Ju & Li, Zaifeng & He, Xiaofeng & Zhu, Jinling & Yang, Shuhua, 2015. "Optimization of a biomass briquette fuel system based on grey relational analysis and analytic hierarchy process: A study using cornstalks in China," Applied Energy, Elsevier, vol. 157(C), pages 523-532.
    3. Nives Jovičić & Alan Antonović & Ana Matin & Suzana Antolović & Sanja Kalambura & Tajana Krička, 2022. "Biomass Valorization of Walnut Shell for Liquefaction Efficiency," Energies, MDPI, vol. 15(2), pages 1-13, January.
    4. Elisabeth Lagneaux & Merel Jansen & Julia Quaedvlieg & Pieter A. Zuidema & Niels P. R. Anten & Mishari Rolando García Roca & Ronald Corvera-Gomringer & Chris J. Kettle, 2021. "Diversity Bears Fruit: Evaluating the Economic Potential of Undervalued Fruits for an Agroecological Restoration Approach in the Peruvian Amazon," Sustainability, MDPI, vol. 13(8), pages 1-18, April.
    5. Ehrig, Rita & Behrendt, Frank, 2013. "Co-firing of imported wood pellets – An option to efficiently save CO2 emissions in Europe?," Energy Policy, Elsevier, vol. 59(C), pages 283-300.
    6. Leonel Jorge Ribeiro Nunes & Radu Godina & João Carlos de Oliveira Matias, 2019. "Technological Innovation in Biomass Energy for the Sustainable Growth of Textile Industry," Sustainability, MDPI, vol. 11(2), pages 1-12, January.
    7. Gheorghe Lazaroiu & Lucian Mihaescu & Gabriel Negreanu & Constantin Pana & Ionel Pisa & Alexandru Cernat & Dana-Alexandra Ciupageanu, 2018. "Experimental Investigations of Innovative Biomass Energy Harnessing Solutions," Energies, MDPI, vol. 11(12), pages 1-18, December.
    8. Allwardt, Jennifer, 2011. "Carbon Credit Payment Options for Agroforestry Projects in Africa," Graduate Research Master's Degree Plan B Papers 118497, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    9. Artur Kraszkiewicz & Artur Przywara & Alexandros Sotirios Anifantis, 2020. "Impact of Ignition Technique on Pollutants Emission during the Combustion of Selected Solid Biofuels," Energies, MDPI, vol. 13(10), pages 1-13, May.
    10. Schäuble, Dominik & Marian, Adela & Cremonese, Lorenzo, 2020. "Conditions for a cost-effective application of smart thermostat systems in residential buildings," Applied Energy, Elsevier, vol. 262(C).
    11. Xuejun Qian & Jingwen Xue & Yulai Yang & Seong W. Lee, 2021. "Thermal Properties and Combustion-Related Problems Prediction of Agricultural Crop Residues," Energies, MDPI, vol. 14(15), pages 1-18, July.
    12. Sastre, C.M. & Maletta, E. & González-Arechavala, Y. & Ciria, P. & Santos, A.M. & del Val, A. & Pérez, P. & Carrasco, J., 2014. "Centralised electricity production from winter cereals biomass grown under central-northern Spain conditions: Global warming and energy yield assessments," Applied Energy, Elsevier, vol. 114(C), pages 737-748.
    13. Bramoullé, Yann & Ductor, Lorenzo, 2018. "Title length," Journal of Economic Behavior & Organization, Elsevier, vol. 150(C), pages 311-324.
    14. Anderson, Blake & M'Gonigle, Michael, 2012. "Does ecological economics have a future?," Ecological Economics, Elsevier, vol. 84(C), pages 37-48.
    15. Chen, Hui & Wang, Jie & Zheng, Yanli & Zhan, Jiao & He, Chenliu & Wang, Qiang, 2018. "Algal biofuel production coupled bioremediation of biomass power plant wastes based on Chlorella sp. C2 cultivation," Applied Energy, Elsevier, vol. 211(C), pages 296-305.
    16. Gómez, Antonio & Dopazo, César & Fueyo, Norberto, 2014. "The causes of the high energy intensity of the Kazakh economy: A characterization of its energy system," Energy, Elsevier, vol. 71(C), pages 556-568.
    17. Grzegorz Zając & Joanna Szyszlak-Bargłowicz & Wojciech Gołębiowski & Małgorzata Szczepanik, 2018. "Chemical Characteristics of Biomass Ashes," Energies, MDPI, vol. 11(11), pages 1-15, October.
    18. Alammar, Ahmed A. & Rezk, Ahmed & Alaswad, Abed & Fernando, Julia & Olabi, A.G. & Decker, Stephanie & Ruhumuliza, Joseph & Gasana, Quénan, 2022. "The technical, economic, and environmental feasibility of a bioheat-driven adsorption cooling system for food cold storing: A case study of Rwanda," Energy, Elsevier, vol. 258(C).
    19. Hari Dulal & Gernot Brodnig & Kalim Shah, 2011. "Capital assets and institutional constraints to implementation of greenhouse gas mitigation options in agriculture," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 16(1), pages 1-23, January.
    20. Grzegorz Maj, 2018. "Emission Factors and Energy Properties of Agro and Forest Biomass in Aspect of Sustainability of Energy Sector," Energies, MDPI, vol. 11(6), pages 1-12, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:13-:d:192320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.