IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i9p2283-d166687.html
   My bibliography  Save this article

Pyrolysis Kinetics of the Arid Land Biomass Halophyte Salicornia Bigelovii and Phoenix Dactylifera Using Thermogravimetric Analysis

Author

Listed:
  • Prosper Dzidzienyo

    (Department of Chemical Engineering, Khalifa University of Science and Technology, Masdar City Campus, P.O. Box 54224, Abu Dhabi, United Arab Emirates)

  • Juan-Rodrigo Bastidas-Oyanedel

    (Department of Chemical Engineering, Khalifa University of Science and Technology, Masdar City Campus, P.O. Box 54224, Abu Dhabi, United Arab Emirates
    Chemistry Department, Khalifa University of Science and Technology, Masdar City Campus, P.O. Box 54224, Abu Dhabi, United Arab Emirates)

  • Jens Ejbye Schmidt

    (Department of Chemical Engineering, Khalifa University of Science and Technology, Masdar City Campus, P.O. Box 54224, Abu Dhabi, United Arab Emirates
    Chemistry Department, Khalifa University of Science and Technology, Masdar City Campus, P.O. Box 54224, Abu Dhabi, United Arab Emirates)

Abstract

Biomass availability in arid regions is challenging due to limited arable land and lack of fresh water. In this study, we focus on pyrolysis of two biomasses that are typically abundant agricultural biomasses in arid regions, focusing on understanding the reaction rates and Arrhenius kinetic parameters that describe the pyrolysis reactions of halophyte Salicornia bigelovii , date palm ( Phoenix dactylifera ) and co-pyrolysis biomass using thermo-gravimetric analysis under non-isothermal conditions. The mass loss data obtained from thermogravimetric analysis of S. bigelovii and date palm revealed the reaction rate peaked between 592 K and 612 K for P. dactylifera leaves and 588 K and 609 K for S. bigelovii at heating rates, 5 K/min, 10 K/min and 15 K/min during the active pyrolysis phase. The activation energy for S. bigelovii and P. dactylifera leaves during this active pyrolysis phase were estimated using the Kissinger method as 147.6 KJ/mol and 164.7 KJ/mol respectively with pre-exponential factors of 3.13 × 10 9 /min and 9.55 × 10 10 /min for the respective biomasses. Other isoconversional models such as the Flynn-Wall-Ozawa were used to determine these kinetic parameters during other phases of the pyrolysis reaction and gave similar results.

Suggested Citation

  • Prosper Dzidzienyo & Juan-Rodrigo Bastidas-Oyanedel & Jens Ejbye Schmidt, 2018. "Pyrolysis Kinetics of the Arid Land Biomass Halophyte Salicornia Bigelovii and Phoenix Dactylifera Using Thermogravimetric Analysis," Energies, MDPI, vol. 11(9), pages 1-8, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2283-:d:166687
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/9/2283/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/9/2283/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Isahak, Wan Nor Roslam Wan & Hisham, Mohamed W.M. & Yarmo, Mohd Ambar & Yun Hin, Taufiq-yap, 2012. "A review on bio-oil production from biomass by using pyrolysis method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5910-5923.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Mahlia, T.M.I. & Syazmi, Z.A.H.S. & Mofijur, M. & Abas, A.E. Pg & Bilad, M.R. & Ong, Hwai Chyuan & Silitonga, A.S., 2020. "Patent landscape review on biodiesel production: Technology updates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    3. Yazan, Devrim Murat & Mandras, Giovanni & Garau, Giorgio, 2017. "Environmental and economic sustainability of integrated production in bio-refineries: The thistle case in Sardinia," Renewable Energy, Elsevier, vol. 102(PB), pages 349-360.
    4. Su, Yu & Zhang, Yanfang & Qi, Jinxia & Xue, Tiantian & Xu, Minggao & Yang, Jiuzhong & Pan, Yang & Lin, Zhenkun, 2020. "Upgrading of furans from in situ catalytic fast pyrolysis of xylan by reduced graphene oxide supported Pt nanoparticles," Renewable Energy, Elsevier, vol. 152(C), pages 94-101.
    5. Waheed A. Rasaq & Mateusz Golonka & Miklas Scholz & Andrzej Białowiec, 2021. "Opportunities and Challenges of High-Pressure Fast Pyrolysis of Biomass: A Review," Energies, MDPI, vol. 14(17), pages 1-20, August.
    6. Chen, Guanyi & Tao, Junyu & Liu, Caixia & Yan, Beibei & Li, Wanqing & Li, Xiangping, 2017. "Hydrogen production via acetic acid steam reforming: A critical review on catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1091-1098.
    7. Sánchez, Antonio Santos & Silva, Yuri Lopes & Kalid, Ricardo Araújo & Cohim, Eduardo & Torres, Ednildo Andrade, 2017. "Waste bio-refineries for the cassava starch industry: New trends and review of alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1265-1275.
    8. Leng, Lijian & Li, Tanghao & Zhan, Hao & Rizwan, Muhammad & Zhang, Weijin & Peng, Haoyi & Yang, Zequn & Li, Hailong, 2023. "Machine learning-aided prediction of nitrogen heterocycles in bio-oil from the pyrolysis of biomass," Energy, Elsevier, vol. 278(PB).
    9. Pecchi, Matteo & Baratieri, Marco, 2019. "Coupling anaerobic digestion with gasification, pyrolysis or hydrothermal carbonization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 462-475.
    10. Patel, Madhumita & Zhang, Xiaolei & Kumar, Amit, 2016. "Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1486-1499.
    11. Goffé, Jonathan & Ferrasse, Jean-Henry, 2019. "Stoichiometry impact on the optimum efficiency of biomass conversion to biofuels," Energy, Elsevier, vol. 170(C), pages 438-458.
    12. Yang, Hanmin & Cui, Yuxiao & Han, Tong & Sandström, Linda & Jönsson, Pär & Yang, Weihong, 2022. "High-purity syngas production by cascaded catalytic reforming of biomass pyrolysis vapors," Applied Energy, Elsevier, vol. 322(C).
    13. Im-orb, Karittha & Wiyaratn, Wisitsree & Arpornwichanop, Amornchai, 2018. "Technical and economic assessment of the pyrolysis and gasification integrated process for biomass conversion," Energy, Elsevier, vol. 153(C), pages 592-603.
    14. Mari Rowena C. Tanquilut & Homer C. Genuino & Erwin Wilbers & Rossana Marie C. Amongo & Delfin C. Suministrado & Kevin F. Yaptenco & Marilyn M. Elauria & Jessie C. Elauria & Hero J. Heeres, 2020. "Biorefining of Pigeon Pea: Residue Conversion by Pyrolysis," Energies, MDPI, vol. 13(11), pages 1-19, June.
    15. Kabir, G. & Hameed, B.H., 2017. "Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 945-967.
    16. Yang, Ziqi & Wu, Yuanqing & Zhang, Zisheng & Li, Hong & Li, Xingang & Egorov, Roman I. & Strizhak, Pavel A. & Gao, Xin, 2019. "Recent advances in co-thermochemical conversions of biomass with fossil fuels focusing on the synergistic effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 384-398.
    17. Kan, Tao & Strezov, Vladimir & Evans, Tim J., 2016. "Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1126-1140.
    18. Mohsin Raza & Abrar Inayat & Ashfaq Ahmed & Farrukh Jamil & Chaouki Ghenai & Salman R. Naqvi & Abdallah Shanableh & Muhammad Ayoub & Ammara Waris & Young-Kwon Park, 2021. "Progress of the Pyrolyzer Reactors and Advanced Technologies for Biomass Pyrolysis Processing," Sustainability, MDPI, vol. 13(19), pages 1-42, October.
    19. Duan, Yumin & Wang, Zhi & Ganeshan, Prabakaran & Sar, Taner & Xu, Suyun & Rajendran, Karthik & Sindhu, Raveendran & Binod, Parameswaran & Pandey, Ashok & Zhang, Zengqiang & Taherzadeh, Mohammad J. & A, 2025. "Anaerobic digestion in global bio-energy production for sustainable bioeconomy: Potential and research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    20. Mirkouei, Amin & Haapala, Karl R. & Sessions, John & Murthy, Ganti S., 2017. "A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 15-35.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2283-:d:166687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.