IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p2007-d161450.html

Stream Data Cleaning for Dynamic Line Rating Application

Author

Listed:
  • Hassan M. Nemati

    (Center for Applied Intelligent Systems Research, Halmstad University, SE-30118 Halmstad, Sweden
    Current address: Center for Applied Intelligent Systems Research, Halmstad University, P.O. Box 823, 30118 Halmstad, Sweden.)

  • A. Laso

    (Department of Electrical and Energy Engineering, University of Cantabria, 39005 Santander, Spain)

  • M. Manana

    (Department of Electrical and Energy Engineering, University of Cantabria, 39005 Santander, Spain)

  • Anita Sant'Anna

    (Center for Applied Intelligent Systems Research, Halmstad University, SE-30118 Halmstad, Sweden)

  • Sławomir Nowaczyk

    (Center for Applied Intelligent Systems Research, Halmstad University, SE-30118 Halmstad, Sweden)

Abstract

The maximum current that an overhead transmission line can continuously carry depends on external weather conditions, most commonly obtained from real-time streaming weather sensors. The accuracy of the sensor data is very important in order to avoid problems such as overheating. Furthermore, faulty sensor readings may cause operators to limit or even stop the energy production from renewable sources in radial networks. This paper presents a method for detecting and replacing sequences of consecutive faulty data originating from streaming weather sensors. The method is based on a combination of (a) a set of constraints obtained from derivatives in consecutive data, and (b) association rules that are automatically generated from historical data. In smart grids, a large amount of historical data from different weather stations are available but rarely used. In this work, we show that mining and analyzing this historical data provides valuable information that can be used for detecting and replacing faulty sensor readings. We compare the result of the proposed method against the exponentially weighted moving average and vector autoregression models. Experiments on data sets with real and synthetic errors demonstrate the good performance of the proposed method for monitoring weather sensors.

Suggested Citation

  • Hassan M. Nemati & A. Laso & M. Manana & Anita Sant'Anna & Sławomir Nowaczyk, 2018. "Stream Data Cleaning for Dynamic Line Rating Application," Energies, MDPI, vol. 11(8), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2007-:d:161450
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/2007/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/2007/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anna, Petrenko, . "Мaркування готової продукції як складова частина інформаційного забезпечення маркетингової діяльності підприємств овочепродуктового підкомплексу," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 2(01).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vivian Welch & Christine M. Mathew & Panteha Babelmorad & Yanfei Li & Elizabeth T. Ghogomu & Johan Borg & Monserrat Conde & Elizabeth Kristjansson & Anne Lyddiatt & Sue Marcus & Jason W. Nickerson & K, 2021. "Health, social care and technological interventions to improve functional ability of older adults living at home: An evidence and gap map," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(3), September.
    2. Persson, Petra & Qiu, Xinyao & Rossin-Slater, Maya, 2021. "Family Spillover Effects of Marginal Diagnoses: The Case of ADHD," IZA Discussion Papers 14020, Institute of Labor Economics (IZA).
    3. Sant'Anna, Ana Claudia & Bergtold, Jason & Shanoyan, Aleksan & Caldas, Marcellus & Granco, Gabriel, 2021. "Deal or No Deal? Analysis of Bioenergy Feedstock Contract Choice with Multiple Opt-out Options and Contract Attribute Substitutability," 2021 Conference, August 17-31, 2021, Virtual 315289, International Association of Agricultural Economists.
    4. Tommaso Colussi & Ingo E. Isphording & Nico Pestel, 2021. "Minority Salience and Political Extremism," American Economic Journal: Applied Economics, American Economic Association, vol. 13(3), pages 237-271, July.
    5. Erkmen Giray Aslim, 2019. "The Relationship Between Health Insurance and Early Retirement: Evidence from the Affordable Care Act," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 45(1), pages 112-140, January.
    6. Edna P. Conwi & Alexander G. Cortez & Normita Ramos, 2016. "Effects of the Dualized Training Program on the Occupational Interest of the Students Enrolled in Bachelor of Science in Hotel and Restaurant Management," Indian Journal of Commerce and Management Studies, Educational Research Multimedia & Publications,India, vol. 7(1), pages 31-36, January.
    7. Nihan Akyelken, 2017. "Mobility-Related Economic Exclusion: Accessibility and Commuting Patterns in Industrial Zones in Turkey," Social Inclusion, Cogitatio Press, vol. 5(4), pages 175-182.
    8. Youngna Choi, 2022. "Economic Stimulus and Financial Instability: Recent Case of the U.S. Household," JRFM, MDPI, vol. 15(6), pages 1-25, June.
    9. Camillia Kong & John Coggon & Michael Dunn & Penny Cooper, 2019. "Judging Values and Participation in Mental Capacity Law," Laws, MDPI, vol. 8(1), pages 1-22, February.
    10. Dindo, Pietro & Massari, Filippo, 2020. "The wisdom of the crowd in dynamic economies," Theoretical Economics, Econometric Society, vol. 15(4), November.
    11. Benno Ferrarini & Julie Maupin & Marthe Hinojales, 2017. "Distributed Ledger Technologies for Developing Asia," ADB Economics Working Paper Series 533, Asian Development Bank.
    12. Andrzej Cieślik & Sarhad Hamza, 2022. "Inward FDI, IFRS Adoption and Institutional Quality: Insights from the MENA Countries," IJFS, MDPI, vol. 10(3), pages 1-19, June.
    13. Anastasios Evgenidis & Apostolos Fasianos, 2019. "Monetary Policy and Wealth Inequalities in Great Britain: Assessing the role of unconventional policies for a decade of household data," Papers 1912.09702, arXiv.org.
    14. Ekaterina Aleksandrova & Kristian Behrens & Maria Kuznetsova, 2020. "Manufacturing (co)agglomeration in a transition country: Evidence from Russia," Journal of Regional Science, Wiley Blackwell, vol. 60(1), pages 88-128, January.
    15. Grazzini, Jakob & Richiardi, Matteo G. & Tsionas, Mike, 2017. "Bayesian estimation of agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 26-47.
    16. Karl McShane, 2017. "Getting Used to Diversity? Immigration and Trust in Sweden," Economics Bulletin, AccessEcon, vol. 37(3), pages 1895-1910.
    17. Bruce A. Seaman, 2013. "The role of the private sector in cultural heritage," Chapters, in: Ilde Rizzo & Anna Mignosa (ed.), Handbook on the Economics of Cultural Heritage, chapter 5, pages i-i, Edward Elgar Publishing.
    18. Laufey Löve & Rannveig Traustadóttir & Gerard Quinn & James Rice, 2017. "The Inclusion of the Lived Experience of Disability in Policymaking," Laws, MDPI, vol. 6(4), pages 1-16, December.
    19. Tiainen, Heidi, 2016. "Contemplating governance for social sustainability in mining in Greenland," Resources Policy, Elsevier, vol. 49(C), pages 282-289.
    20. Chen, Cheng & Senga, Tatsuro & Sun, Chang & Zhang, Hongyong, 2023. "Uncertainty, imperfect information, and expectation formation over the firm’s life cycle," Journal of Monetary Economics, Elsevier, vol. 140(C), pages 60-77.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2007-:d:161450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.