IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p1953-d160397.html
   My bibliography  Save this article

Electro-Insulating Nanofluids Based on Synthetic Ester and TiO 2 or C 60 Nanoparticles in Power Transformer

Author

Listed:
  • Zbigniew Nadolny

    (Institute of Electric Power Engineering, Poznan University of Technology, Piotrowo 3A, 60-965 Poznan, Poland)

  • Grzegorz Dombek

    (Institute of Electric Power Engineering, Poznan University of Technology, Piotrowo 3A, 60-965 Poznan, Poland)

Abstract

The article discusses thermal properties of synthetic ester admixed with nanoparticles. The analyzed thermal properties were: thermal conductivity λ , kinematic viscosity υ , density ρ , specific heat c p , and the thermal expansion factor β - all obtained by means of measurements. On the basis of these, the authors calculated the heat transfer factor α , which determines the ability of the liquid to heat transport. The authors used nanoparticles of fullerene C 60 and titanium oxide TiO 2 . The analysis of the thermal properties was done for the temperatures of 25, 40, 60 and 80 °C. The authors analyzed the impact of nanoparticles C 60 and TiO 2 on thermal properties of synthetic ester. They proved that fullerene C 60 in principle had no influence on heat transfer factor α of the ester, while titanium oxide TiO 2 had some positive influence on the factor, the value of which increased about 1–3%.

Suggested Citation

  • Zbigniew Nadolny & Grzegorz Dombek, 2018. "Electro-Insulating Nanofluids Based on Synthetic Ester and TiO 2 or C 60 Nanoparticles in Power Transformer," Energies, MDPI, vol. 11(8), pages 1-11, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:1953-:d:160397
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/1953/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/1953/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saidur, R. & Leong, K.Y. & Mohammad, H.A., 2011. "A review on applications and challenges of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1646-1668, April.
    2. Muhammad Hakirin Roslan & Norhafiz Azis & Mohd Zainal Abidin Ab Kadir & Jasronita Jasni & Zulkifli Ibrahim & Azalan Ahmad, 2017. "A Simplified Top-Oil Temperature Model for Transformers Based on the Pathway of Energy Transfer Concept and the Thermal-Electrical Analogy," Energies, MDPI, vol. 10(11), pages 1-15, November.
    3. Pawel Rozga, 2016. "Streamer Propagation and Breakdown in a Very Small Point-Insulating Plate Gap in Mineral Oil and Ester Liquids at Positive Lightning Impulse Voltage," Energies, MDPI, vol. 9(6), pages 1-12, June.
    4. Pawel Rozga & Marcin Stanek & Bartlomiej Pasternak, 2018. "Characteristics of Negative Streamer Development in Ester Liquids and Mineral Oil in a Point-To-Sphere Electrode System with a Pressboard Barrier," Energies, MDPI, vol. 11(5), pages 1-13, April.
    5. Ruohan Gong & Jiangjun Ruan & Jingzhou Chen & Yu Quan & Jian Wang & Cihan Duan, 2017. "Analysis and Experiment of Hot-Spot Temperature Rise of 110 kV Three-Phase Three-Limb Transformer," Energies, MDPI, vol. 10(8), pages 1-12, July.
    6. Yuzhen Lv & Muhammad Rafiq & Chengrong Li & Bingliang Shan, 2017. "Study of Dielectric Breakdown Performance of Transformer Oil Based Magnetic Nanofluids," Energies, MDPI, vol. 10(7), pages 1-21, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pawel Rozga & Abderrahmane Beroual & Piotr Przybylek & Maciej Jaroszewski & Konrad Strzelecki, 2020. "A Review on Synthetic Ester Liquids for Transformer Applications," Energies, MDPI, vol. 13(23), pages 1-33, December.
    2. Haonan Tian & Zhongbao Wei & Sriram Vaisambhayana & Madasamy Thevar & Anshuman Tripathi & Philip Kjær, 2019. "A Coupled, Semi-Numerical Model for Thermal Analysis of Medium Frequency Transformer," Energies, MDPI, vol. 12(2), pages 1-16, January.
    3. Karatas, Mehmet & Bicen, Yunus, 2022. "Nanoparticles for next-generation transformer insulating fluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Shen, Zijia & Wang, Feipeng & Wang, Zhiqing & Li, Jian, 2021. "A critical review of plant-based insulating fluids for transformer: 30-year development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Abu Shadate Faisal Mahamude & Wan Sharuzi Wan Harun & Kumaran Kadirgama & Devarajan Ramasamy & Kaniz Farhana & Khalid Saleh & Talal Yusaf, 2022. "Experimental Study on the Efficiency Improvement of Flat Plate Solar Collectors Using Hybrid Nanofluids Graphene/Waste Cotton," Energies, MDPI, vol. 15(7), pages 1, March.
    6. Salman, B.H. & Mohammed, H.A. & Munisamy, K.M. & Kherbeet, A. Sh., 2013. "Characteristics of heat transfer and fluid flow in microtube and microchannel using conventional fluids and nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 848-880.
    7. Syahira Mansur & Anuar Ishak & Ioan Pop, 2015. "The Magnetohydrodynamic Stagnation Point Flow of a Nanofluid over a Stretching/Shrinking Sheet with Suction," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-14, March.
    8. Amjad Ali & Zainab Bukhari & Gullnaz Shahzadi & Zaheer Abbas & Muhammad Umar, 2021. "Numerical Simulation of the Thermally Developed Pulsatile Flow of a Hybrid Nanofluid in a Constricted Channel," Energies, MDPI, vol. 14(9), pages 1-22, April.
    9. Aftab, A. & Ismail, A.R. & Ibupoto, Z.H. & Akeiber, H. & Malghani, M.G.K., 2017. "Nanoparticles based drilling muds a solution to drill elevated temperature wells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1301-1313.
    10. Issouf Fofana & Yazid Hadjadj, 2018. "Power Transformer Diagnostics, Monitoring and Design Features," Energies, MDPI, vol. 11(12), pages 1-5, November.
    11. Amaris, Carlos & Vallès, Manel & Bourouis, Mahmoud, 2018. "Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review," Applied Energy, Elsevier, vol. 231(C), pages 826-853.
    12. Janvier Sylvestre N’cho & Issouf Fofana, 2020. "Review of Fiber Optic Diagnostic Techniques for Power Transformers," Energies, MDPI, vol. 13(7), pages 1-24, April.
    13. Abdin, Z. & Alim, M.A. & Saidur, R. & Islam, M.R. & Rashmi, W. & Mekhilef, S. & Wadi, A., 2013. "Solar energy harvesting with the application of nanotechnology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 837-852.
    14. Suhaib Ahmad Khan & Mohd Tariq & Asfar Ali Khan & Shabana Urooj & Lucian Mihet-Popa, 2022. "An Experimental Study and Statistical Analysis on the Electrical Properties of Synthetic Ester-Based Nanofluids," Energies, MDPI, vol. 15(23), pages 1-14, December.
    15. Issouf Fofana & U. Mohan Rao, 2018. "Engineering Dielectric Liquid Applications," Energies, MDPI, vol. 11(10), pages 1-4, October.
    16. Sharma, A. & Tripathi, D. & Sharma, R.K. & Tiwari, A.K., 2019. "Analysis of double diffusive convection in electroosmosis regulated peristaltic transport of nanofluids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    17. Azmi, W.H. & Sharif, M.Z. & Yusof, T.M. & Mamat, Rizalman & Redhwan, A.A.M., 2017. "Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 415-428.
    18. Ranga Babu, J.A. & Kumar, K. Kiran & Srinivasa Rao, S., 2017. "State-of-art review on hybrid nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 551-565.
    19. Fatih Atalar & Aysel Ersoy & Pawel Rozga, 2022. "Investigation of Effects of Different High Voltage Types on Dielectric Strength of Insulating Liquids," Energies, MDPI, vol. 15(21), pages 1-25, October.
    20. Carl P. Wolmarans & Cuthbert Nyamupangedengu & Carina Schumann & Neil J. Coville & Marcelo M. F. Saba, 2022. "The Influence of Diethylaniline and Toluene on the Streamer Propagation in Cyclohexane between a Point-Plane Gap under Positive Impulse Voltage Stress," Energies, MDPI, vol. 15(13), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:1953-:d:160397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.