IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1359-d149144.html
   My bibliography  Save this article

Magnesium Aminoclay-Fe 3 O 4 (MgAC-Fe 3 O 4 ) Hybrid Composites for Harvesting of Mixed Microalgae

Author

Listed:
  • Bohwa Kim

    (Advanced Biomass R&D Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
    Equally Contributing Authors.)

  • Vu Khac Hoang Bui

    (Department of BioNano Technology, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea
    Equally Contributing Authors.)

  • Wasif Farooq

    (Department of Chemical Engineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia)

  • Sang Goo Jeon

    (Biomass and Waste Energy Laboratory, Korea Institute of Energy Research (KIER), Daejeon 34129, Korea)

  • You-Kwan Oh

    (School of Chemical and Biomolecular Engineering, Pusan National University, Busan 46241, Korea)

  • Young-Chul Lee

    (Department of BioNano Technology, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea)

Abstract

In this paper, we describe the synthesis of magnesium aminoclay-iron oxide (MgAC-Fe 3 O 4 ) hybrid composites for microalgae-harvesting application. MgAC-templated Fe 3 O 4 nanoparticles (NPs) were synthesized in different ratios of MgAC and Fe 3 O 4 NPs. The uniform distribution of Fe 3 O 4 NPs in the MgAC matrix was confirmed by transmission electron microscopy (TEM). According to obtained X-ray diffraction (XRD) patterns, increased MgAC loading leads to decreased intensity of the composites’ (311) plane of Fe 3 O 4 NPs. For harvesting of Chlorella sp. KR-1, Scenedesmus obliquus and mixed microalgae ( Chlorella sp. KR-1/ Scenedesmus obliquus ), the optimal pH was 4.0. At higher pHs, the microalgae-harvesting efficiencies fell. Sample #1, which had the highest MgAC concentration, showed the most stability: the harvesting efficiencies for Chlorella sp. KR-1, Scenedesmus obliquus , and mixed microalgae were reduced only to ~50% at pH = 10.0. The electrostatic interaction between MgAC and the Fe 3 O 4 NPs in the hybrid samples by microalgae, as confirmed by zeta potential measurements, were attributed to the harvesting mechanisms. Moreover, the zeta potentials of the MgAC-Fe 3 O 4 hybrid composites were reduced as pH was increased, thus diminishing the microalgae-harvesting efficiencies.

Suggested Citation

  • Bohwa Kim & Vu Khac Hoang Bui & Wasif Farooq & Sang Goo Jeon & You-Kwan Oh & Young-Chul Lee, 2018. "Magnesium Aminoclay-Fe 3 O 4 (MgAC-Fe 3 O 4 ) Hybrid Composites for Harvesting of Mixed Microalgae," Energies, MDPI, vol. 11(6), pages 1-10, May.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1359-:d:149144
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1359/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1359/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huang, GuanHua & Chen, Feng & Wei, Dong & Zhang, XueWu & Chen, Gu, 2010. "Biodiesel production by microalgal biotechnology," Applied Energy, Elsevier, vol. 87(1), pages 38-46, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vasistha, S. & Khanra, A. & Clifford, M. & Rai, M.P., 2021. "Current advances in microalgae harvesting and lipid extraction processes for improved biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Behnam Tabatabai & Afua Adusei & Alok Kumar Shrivastava & Prashant Kumar Singh & Viji Sitther, 2020. "Nitrogen Deprivation in Fremyella diplosiphon Augments Lipid Production without Affecting Growth," Energies, MDPI, vol. 13(21), pages 1-12, November.
    2. Wu, Hong & Li, Yuanyuan & Chen, Lei & Zong, Minhua, 2011. "Production of microbial oil with high oleic acid content by Trichosporon capitatum," Applied Energy, Elsevier, vol. 88(1), pages 138-142, January.
    3. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
    4. Patel, Akash & Gami, Bharat & Patel, Pankaj & Patel, Beena, 2017. "Microalgae: Antiquity to era of integrated technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 535-547.
    5. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    6. Cremonez, Paulo André & Feroldi, Michael & de Araújo, Amanda Viana & Negreiros Borges, Maykon & Weiser Meier, Thompson & Feiden, Armin & Gustavo Teleken, Joel, 2015. "Biofuels in Brazilian aviation: Current scenario and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1063-1072.
    7. Ramachandran, K. & Suganya, T. & Nagendra Gandhi, N. & Renganathan, S., 2013. "Recent developments for biodiesel production by ultrasonic assist transesterification using different heterogeneous catalyst: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 410-418.
    8. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
    9. Nirmala, N. & Dawn, S.S., 2021. "Optimization of Chlorella variabilis. MK039712.1 lipid transesterification using Response Surface Methodology and analytical characterization of biodiesel," Renewable Energy, Elsevier, vol. 179(C), pages 1663-1673.
    10. Zeng, Yu & Xie, Tonghui & Li, Panyu & Jian, Banggao & Li, Xiang & Xie, Yi & Zhang, Yongkui, 2018. "Enhanced lipid production and nutrient utilization of food waste hydrolysate by mixed culture of oleaginous yeast Rhodosporidium toruloides and oleaginous microalgae Chlorella vulgaris," Renewable Energy, Elsevier, vol. 126(C), pages 915-923.
    11. Atapour, Mehdi & Kariminia, Hamid-Reza, 2011. "Characterization and transesterification of Iranian bitter almond oil for biodiesel production," Applied Energy, Elsevier, vol. 88(7), pages 2377-2381, July.
    12. Alagu, Karthikeyan & Venu, Harish & Jayaraman, Jayaprabakar & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu & S, Dhanasekar, 2019. "Novel water hyacinth biodiesel as a potential alternative fuel for existing unmodified diesel engine: Performance, combustion and emission characteristics," Energy, Elsevier, vol. 179(C), pages 295-305.
    13. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    14. Demirbas, Ayhan, 2011. "Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems," Applied Energy, Elsevier, vol. 88(10), pages 3541-3547.
    15. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu, 2020. "Experimental assessment on the regulated and unregulated emissions of DI diesel engine fuelled with Chlorella emersonii methyl ester (CEME)," Renewable Energy, Elsevier, vol. 151(C), pages 88-102.
    16. Amaro, Helena M. & Macedo, Ângela C. & Malcata, F. Xavier, 2012. "Microalgae: An alternative as sustainable source of biofuels?," Energy, Elsevier, vol. 44(1), pages 158-166.
    17. Niblick, Briana & Landis, Amy E., 2016. "Assessing renewable energy potential on United States marginal and contaminated sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 489-497.
    18. Andres Quintero, Julian & Ruth Felix, Erika & Eduardo Rincón, Luis & Crisspín, Marianella & Fernandez Baca, Jaime & Khwaja, Yasmeen & Cardona, Carlos Ariel, 2012. "Social and techno-economical analysis of biodiesel production in Peru," Energy Policy, Elsevier, vol. 43(C), pages 427-435.
    19. Chen, Hui & Wang, Jie & Zheng, Yanli & Zhan, Jiao & He, Chenliu & Wang, Qiang, 2018. "Algal biofuel production coupled bioremediation of biomass power plant wastes based on Chlorella sp. C2 cultivation," Applied Energy, Elsevier, vol. 211(C), pages 296-305.
    20. Capson-Tojo, Gabriel & Torres, Alvaro & Muñoz, Raúl & Bartacek, Jan & Jeison, David, 2017. "Mesophilic and thermophilic anaerobic digestion of lipid-extracted microalgae N. gaditana for methane production," Renewable Energy, Elsevier, vol. 105(C), pages 539-546.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1359-:d:149144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.