IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i5p1024-d142786.html
   My bibliography  Save this article

A Proportional Resonant Controller for Suppressing Resonance in Grid Tied Multilevel Inverter

Author

Listed:
  • Hemakesavulu Oruganti

    (Department of Electrical and Electronics Engineering, SRM Institute of Science & Technology, Chennai 603203, India)

  • Subranshu Sekhar Dash

    (Department of Electrical and Electronics Engineering, SRM Institute of Science & Technology, Chennai 603203, India)

  • Chellammal Nallaperumal

    (Department of Electrical and Electronics Engineering, SRM Institute of Science & Technology, Chennai 603203, India)

  • Sridhar Ramasamy

    (Department of Electrical and Electronics Engineering, SRM Institute of Science & Technology, Chennai 603203, India)

Abstract

Photovoltaic (PV) resources are connected to power grid through voltage source inverters. The quality of power output from PV inverter should be in grid compliance of IEEE standard. In this regard, the deployment of appropriate low pass filters such as inductor (L), capacitor (C) or inductor capacitor inductor (LCL) is critical as they aid in minimizing the harmonics being injected into the grid. LCL filters are well entrenched but they bring in stability issue due to resonance and therefore a damping controller with suitable control logic is needed. In this work, to suppress resonance, a Proportional Resonant-Derivative (PR-D) controller has been designed, proposed, and compared with existing counterparts, i.e., two-degree of freedom controller (2DOF) and feedback current controller. The results exhibits that PR-D controller admits meliorate resonance damping and constancy when compared with the two other schemes. The whole system has been simulated in MATLAB/Simulink environment and a prototype has also been made to ensure the performance.

Suggested Citation

  • Hemakesavulu Oruganti & Subranshu Sekhar Dash & Chellammal Nallaperumal & Sridhar Ramasamy, 2018. "A Proportional Resonant Controller for Suppressing Resonance in Grid Tied Multilevel Inverter," Energies, MDPI, vol. 11(5), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1024-:d:142786
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/5/1024/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/5/1024/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jose Miguel Espi & Rafael Garcia-Gil & Jaime Castello, 2017. "Capacitive Emulation for LCL-Filtered Grid-Connected Converters," Energies, MDPI, vol. 10(7), pages 1-15, July.
    2. Hae-Gwang Jeong & Gwang-Seob Kim & Kyo-Beum Lee, 2013. "Second-Order Harmonic Reduction Technique for Photovoltaic Power Conditioning Systems Using a Proportional-Resonant Controller," Energies, MDPI, vol. 6(1), pages 1-18, January.
    3. Mehrasa, Majid & Pouresmaeil, Edris & Akorede, Mudathir Funsho & Jørgensen, Bo Nørregaard & Catalão, João P.S., 2015. "Multilevel converter control approach of active power filter for harmonics elimination in electric grids," Energy, Elsevier, vol. 84(C), pages 722-731.
    4. Iman Lorzadeh & Hossein Askarian Abyaneh & Mehdi Savaghebi & Alireza Bakhshai & Josep M. Guerrero, 2016. "Capacitor Current Feedback-Based Active Resonance Damping Strategies for Digitally-Controlled Inductive-Capacitive-Inductive-Filtered Grid-Connected Inverters," Energies, MDPI, vol. 9(8), pages 1-32, August.
    5. Weiyi Zhang & Daniel Remon & Antoni M. Cantarellas & Pedro Rodriguez, 2016. "A Unified Current Loop Tuning Approach for Grid-Connected Photovoltaic Inverters," Energies, MDPI, vol. 9(9), pages 1-19, September.
    6. Ningyun Zhang & Houjun Tang & Chen Yao, 2014. "A Systematic Method for Designing a PR Controller and Active Damping of the LCL Filter for Single-Phase Grid-Connected PV Inverters," Energies, MDPI, vol. 7(6), pages 1-21, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Ventosa-Cutillas & Pablo Montero-Robina & Francisco Umbría & Federico Cuesta & Francisco Gordillo, 2019. "Integrated Control and Modulation for Three-Level NPC Rectifiers," Energies, MDPI, vol. 12(9), pages 1-15, April.
    2. Ya Zhang & Maurice G. L. Roes & Marcel A. M. Hendrix & Jorge L. Duarte, 2018. "Voltage Harmonic Suppression by Means of Grid-Connected Converters Using only Local Measurements," Energies, MDPI, vol. 11(10), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bingzhang Li & Shenghua Huang & Xi Chen, 2017. "Performance Improvement for Two-Stage Single-Phase Grid-Connected Converters Using a Fast DC Bus Control Scheme and a Novel Synchronous Frame Current Controller," Energies, MDPI, vol. 10(3), pages 1-30, March.
    2. Zhun Meng & Yi-Feng Wang & Liang Yang & Wei Li, 2017. "High Frequency Dual-Buck Full-Bridge Inverter Utilizing a Dual-Core MCU and Parallel Algorithm for Renewable Energy Applications," Energies, MDPI, vol. 10(3), pages 1-18, March.
    3. Weiyi Zhang & Daniel Remon & Antoni M. Cantarellas & Pedro Rodriguez, 2016. "A Unified Current Loop Tuning Approach for Grid-Connected Photovoltaic Inverters," Energies, MDPI, vol. 9(9), pages 1-19, September.
    4. Shiying Zhou & Xudong Zou & Donghai Zhu & Li Tong & Yong Kang, 2017. "Improved Capacitor Voltage Feedforward for Three-Phase LCL-Type Grid-Connected Converter to Suppress Start-Up Inrush Current," Energies, MDPI, vol. 10(5), pages 1-19, May.
    5. Jose Miguel Espi & Rafael Garcia-Gil & Jaime Castello, 2017. "Capacitive Emulation for LCL-Filtered Grid-Connected Converters," Energies, MDPI, vol. 10(7), pages 1-15, July.
    6. Mohamed A. Hassan & Muhammed Y. Worku & Mohamed A. Abido, 2019. "Optimal Power Control of Inverter-Based Distributed Generations in Grid-Connected Microgrid," Sustainability, MDPI, vol. 11(20), pages 1-27, October.
    7. Gimara Rajapakse & Shantha Jayasinghe & Alan Fleming & Michael Negnevitsky, 2017. "A Model Predictive Control-Based Power Converter System for Oscillating Water Column Wave Energy Converters," Energies, MDPI, vol. 10(10), pages 1-17, October.
    8. Yassir El Karkri & Alexis B. Rey-Boué & Hassan El Moussaoui & Johannes Stöckl & Thomas I. Strasser, 2019. "Improved Control of Grid-connected DFIG-based Wind Turbine using Proportional-Resonant Regulators during Unbalanced Grid," Energies, MDPI, vol. 12(21), pages 1-21, October.
    9. Mahdi Shahparasti & Pedro Catalán & Nurul Fazlin Roslan & Joan Rocabert & Raúl-Santiago Muñoz-Aguilar & Alvaro Luna, 2018. "Enhanced Control for Improving the Operation of Grid-Connected Power Converters under Faulty and Saturated Conditions," Energies, MDPI, vol. 11(3), pages 1-21, February.
    10. Qingzhu Wan & Hongfan Zhang, 2018. "Research on Resonance Mechanism and Suppression Technology of Photovoltaic Cluster Inverter," Energies, MDPI, vol. 11(4), pages 1-16, April.
    11. Min Huang & Han Li & Weimin Wu & Frede Blaabjerg, 2019. "Observer-Based Sliding Mode Control to Improve Stability of Three-Phase LCL-Filtered Grid-Connected VSIs," Energies, MDPI, vol. 12(8), pages 1-15, April.
    12. Matthias Schiesser & Sébastien Wasterlain & Mario Marchesoni & Mauro Carpita, 2018. "A Simplified Design Strategy for Multi-Resonant Current Control of a Grid-Connected Voltage Source Inverter with an LCL Filter," Energies, MDPI, vol. 11(3), pages 1-15, March.
    13. Silpa Baburajan & Haoran Wang & Dinesh Kumar & Qian Wang & Frede Blaabjerg, 2021. "DC-Link Current Harmonic Mitigation via Phase-Shifting of Carrier Waves in Paralleled Inverter Systems," Energies, MDPI, vol. 14(14), pages 1-17, July.
    14. Hadi Hosseini Kordkheili & Mahdi Banejad & Ali Akbarzadeh Kalat & Edris Pouresmaeil & João P. S. Catalão, 2018. "Direct-Lyapunov-Based Control Scheme for Voltage Regulation in a Three-Phase Islanded Microgrid with Renewable Energy Sources," Energies, MDPI, vol. 11(5), pages 1-18, May.
    15. Yuxing Liu & Jiazhu Xu & Zhikang Shuai & Yong Li & Yanjian Peng & Chonggan Liang & Guiping Cui & Sijia Hu & Mingmin Zhang & Bin Xie, 2020. "A Novel Harmonic Suppression Traction Transformer with Integrated Filtering Inductors for Railway Systems," Energies, MDPI, vol. 13(2), pages 1-18, January.
    16. Ventosa-Cutillas, Antonio & Montero-Robina, Pablo & Cuesta, Federico & Gordillo, Francisco, 2020. "A simple modulation approach for interfacing three-level Neutral-Point-Clamped converters to the grid," Energy, Elsevier, vol. 205(C).
    17. Cheng Nie & Yue Wang & Wanjun Lei & Tian Li & Shiyuan Yin, 2018. "Modeling and Enhanced Error-Free Current Control Strategy for Inverter with Virtual Resistor Damping," Energies, MDPI, vol. 11(10), pages 1-15, September.
    18. Jura Arkhangelski & Pedro Roncero-Sánchez & Mahamadou Abdou-Tankari & Javier Vázquez & Gilles Lefebvre, 2019. "Control and Restrictions of a Hybrid Renewable Energy System Connected to the Grid: A Battery and Supercapacitor Storage Case," Energies, MDPI, vol. 12(14), pages 1-23, July.
    19. Lei Chen & Hongkun Chen & Jun Yang & Yanjuan Yu & Kaiwei Zhen & Yang Liu & Li Ren, 2017. "Coordinated Control of Superconducting Fault Current Limiter and Superconducting Magnetic Energy Storage for Transient Performance Enhancement of Grid-Connected Photovoltaic Generation System," Energies, MDPI, vol. 10(1), pages 1-23, January.
    20. Botong Li & Jianfei Jia & Shimin Xue, 2016. "Study on the Current-Limiting-Capable Control Strategy for Grid-Connected Three-Phase Four-Leg Inverter in Low-Voltage Network," Energies, MDPI, vol. 9(9), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1024-:d:142786. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.