IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i12p2867-d1412779.html
   My bibliography  Save this article

Shunt Active Power Filters in Three-Phase, Three-Wire Systems: A Topical Review

Author

Listed:
  • Mihaela Popescu

    (Department of Electromechanics Environment and Applied Informatics, Faculty of Electrical Engineering, University of Craiova, 200585 Craiova, Romania)

  • Alexandru Bitoleanu

    (Department of Electromechanics Environment and Applied Informatics, Faculty of Electrical Engineering, University of Craiova, 200585 Craiova, Romania)

  • Constantin Vlad Suru

    (Department of Electromechanics Environment and Applied Informatics, Faculty of Electrical Engineering, University of Craiova, 200585 Craiova, Romania)

  • Mihaita Linca

    (Department of Electromechanics Environment and Applied Informatics, Faculty of Electrical Engineering, University of Craiova, 200585 Craiova, Romania)

  • Laurentiu Alboteanu

    (Department of Electromechanics Environment and Applied Informatics, Faculty of Electrical Engineering, University of Craiova, 200585 Craiova, Romania)

Abstract

The increasingly extensive use of non-linear loads, mostly including static power converters, in large industry, commercial, and domestic applications, as well as the spread of renewable energy sources in distribution-generated units, make the use of the most efficient power quality improvement systems a current concern. The use of active power filters proved to be the most advanced solution with the best compensation performance for harmonics, reactive power, and load unbalance. Thus, issues related to improving the power quality through active power filters are very topical and addressed by many researchers. This paper presents a topical review on the shunt active power filters in three-phase, three-wire systems. The power circuit and configurations of shunt active filtering systems are considered, including the multilevel topologies and use of advanced power semiconductor devices with lower switching losses and higher switching frequencies. Several compensation strategies, reference current generation methods, current control techniques, and DC-voltage control are pointed out and discussed. The direct power control method is also discussed. New advanced control methods that have better performance than conventional ones and gained attention in the recent literature are highlighted. The current state of renewable energy sources integration with shunt active power filters is analyzed. Concerns regarding the optimum placement and sizing of the active power filters in a given power network to reduce the investment costs are also presented. Trends and future developments are discussed at the end of this paper. For a rigorous substantiation, more than 250 publications on this topic, most of them very recent, constitute the basis of bibliographic references and can assist readers who are interested to explore the subject in greater detail.

Suggested Citation

  • Mihaela Popescu & Alexandru Bitoleanu & Constantin Vlad Suru & Mihaita Linca & Laurentiu Alboteanu, 2024. "Shunt Active Power Filters in Three-Phase, Three-Wire Systems: A Topical Review," Energies, MDPI, vol. 17(12), pages 1-42, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2867-:d:1412779
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/12/2867/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/12/2867/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mehrasa, Majid & Pouresmaeil, Edris & Akorede, Mudathir Funsho & Jørgensen, Bo Nørregaard & Catalão, João P.S., 2015. "Multilevel converter control approach of active power filter for harmonics elimination in electric grids," Energy, Elsevier, vol. 84(C), pages 722-731.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gimara Rajapakse & Shantha Jayasinghe & Alan Fleming & Michael Negnevitsky, 2017. "A Model Predictive Control-Based Power Converter System for Oscillating Water Column Wave Energy Converters," Energies, MDPI, vol. 10(10), pages 1-17, October.
    2. Tianlei Zang & Zhengyou He & Yan Wang & Ling Fu & Zhiyu Peng & Qingquan Qian, 2017. "A Piecewise Bound Constrained Optimization for Harmonic Responsibilities Assessment under Utility Harmonic Impedance Changes," Energies, MDPI, vol. 10(7), pages 1-20, July.
    3. Matthias Schiesser & Sébastien Wasterlain & Mario Marchesoni & Mauro Carpita, 2018. "A Simplified Design Strategy for Multi-Resonant Current Control of a Grid-Connected Voltage Source Inverter with an LCL Filter," Energies, MDPI, vol. 11(3), pages 1-15, March.
    4. Hadi Hosseini Kordkheili & Mahdi Banejad & Ali Akbarzadeh Kalat & Edris Pouresmaeil & João P. S. Catalão, 2018. "Direct-Lyapunov-Based Control Scheme for Voltage Regulation in a Three-Phase Islanded Microgrid with Renewable Energy Sources," Energies, MDPI, vol. 11(5), pages 1-18, May.
    5. Ventosa-Cutillas, Antonio & Montero-Robina, Pablo & Cuesta, Federico & Gordillo, Francisco, 2020. "A simple modulation approach for interfacing three-level Neutral-Point-Clamped converters to the grid," Energy, Elsevier, vol. 205(C).
    6. Hemakesavulu Oruganti & Subranshu Sekhar Dash & Chellammal Nallaperumal & Sridhar Ramasamy, 2018. "A Proportional Resonant Controller for Suppressing Resonance in Grid Tied Multilevel Inverter," Energies, MDPI, vol. 11(5), pages 1-15, April.
    7. Zafari, A. & Jazaeri, M., 2017. "Conceptual design of an efficient unified shunt active power filter based on voltage and current source converters," Energy, Elsevier, vol. 119(C), pages 911-925.
    8. Tareen, Wajahat Ullah & Mekhilef, Saad, 2016. "Transformer-less 3P3W SAPF (three-phase three-wire shunt active power filter) with line-interactive UPS (uninterruptible power supply) and battery energy storage stage," Energy, Elsevier, vol. 109(C), pages 525-536.
    9. Xiu, Liancheng & Du, Zhiye & Wu, BinBing & Li, Guanjun & Wang, Dongjie & Song, Hanliang, 2021. "A novel adaptive frequency extraction method for fast and accurate connection between inverters and microgrids," Energy, Elsevier, vol. 221(C).
    10. Zheng Gong & Qi Cui & Xi Zheng & Peng Dai & Rongwu Zhu, 2018. "An Improved Imperialist Competitive Algorithm to Solve the Selected Harmonic Elimination Pulse-Width Modulation in Multilevel Converters," Energies, MDPI, vol. 11(11), pages 1-16, November.
    11. Cheng-I Chen & Chien-Kai Lan & Yeong-Chin Chen & Chung-Hsien Chen, 2019. "Adaptive Frequency-Based Reference Compensation Current Control Strategy of Shunt Active Power Filter for Unbalanced Nonlinear Loads," Energies, MDPI, vol. 12(16), pages 1-14, August.
    12. Mehrasa, Majid & Pouresmaeil, Edris & Zabihi, Sasan & Rodrigues, Eduardo M.G. & Catalão, João P.S., 2016. "A control strategy for the stable operation of shunt active power filters in power grids," Energy, Elsevier, vol. 96(C), pages 325-334.
    13. Mohammed Kh. AL-Nussairi & Ramazan Bayindir & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Pierluigi Siano, 2017. "Constant Power Loads (CPL) with Microgrids: Problem Definition, Stability Analysis and Compensation Techniques," Energies, MDPI, vol. 10(10), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2867-:d:1412779. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.