IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i14p4229-d593647.html
   My bibliography  Save this article

DC-Link Current Harmonic Mitigation via Phase-Shifting of Carrier Waves in Paralleled Inverter Systems

Author

Listed:
  • Silpa Baburajan

    (Department of Energy and Technology, Aalborg University, 9220 Aalborg, Denmark)

  • Haoran Wang

    (Department of Energy and Technology, Aalborg University, 9220 Aalborg, Denmark)

  • Dinesh Kumar

    (Global Research and Development Centre, Danfoss Drives A/S, 6300 Gråsten, Denmark)

  • Qian Wang

    (Department of Energy and Technology, Aalborg University, 9220 Aalborg, Denmark)

  • Frede Blaabjerg

    (Department of Energy and Technology, Aalborg University, 9220 Aalborg, Denmark)

Abstract

DC-connected parallel inverter systems are gaining popularity in industrial applications. However, such parallel systems generate excess current ripple (harmonics) at the DC-link due to harmonic interactions between the inverters in addition to the harmonics from the PWM switching. These DC-link harmonics cause the failure of fragile components such as DC-link capacitors. This paper proposes an interleaving scheme to minimize the current harmonics induced in the DC-link of such a system. First, the optimal phase-shift angle for the carrier signal is investigated using the analytical equations, which provides maximum capacitor current ripple cancellation (i.e., at the main switching frequency harmonic component). These optimally phase-shifted switching cycles lead to variations of the output current ripples, which, when summed together at the DC-link, result in the cancellations of the DC-link current ripples. The results show that when the carrier waves of the two inverters are phase-shifted by a 90° angle, the maximum high-frequency harmonic ripple cancellation occurs, which reduces the overall root-mean-square (RMS) value of the DC-capacitor current by almost 50%. The outcome of this proposed solution is a cost-effective DC-harmonics mitigating strategy for the industrial designers to practically configure multi-inverter systems, even when most of the drives are not operating at rated power levels. The experimental and simulation results presented in this paper verify the effectiveness of the proposed carrier-based phase-shifting scheme for two different configurations of common DC connected multi-converter systems.

Suggested Citation

  • Silpa Baburajan & Haoran Wang & Dinesh Kumar & Qian Wang & Frede Blaabjerg, 2021. "DC-Link Current Harmonic Mitigation via Phase-Shifting of Carrier Waves in Paralleled Inverter Systems," Energies, MDPI, vol. 14(14), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4229-:d:593647
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/14/4229/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/14/4229/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anatolii Tcai & Ibrahim Mohd Alsofyani & In-Yong Seo & Kyo-Beum Lee, 2018. "DC-link Ripple Reduction in a DPWM-Based Two-Level VSI," Energies, MDPI, vol. 11(11), pages 1-16, November.
    2. Ningyun Zhang & Houjun Tang & Chen Yao, 2014. "A Systematic Method for Designing a PR Controller and Active Damping of the LCL Filter for Single-Phase Grid-Connected PV Inverters," Energies, MDPI, vol. 7(6), pages 1-21, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seung-Yong Lee & Jae-Jung Jung, 2022. "The Circulating Current Reduction Control Method for Asynchronous Carrier Phases of Parallel Connected Inverters," Energies, MDPI, vol. 15(5), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yassir El Karkri & Alexis B. Rey-Boué & Hassan El Moussaoui & Johannes Stöckl & Thomas I. Strasser, 2019. "Improved Control of Grid-connected DFIG-based Wind Turbine using Proportional-Resonant Regulators during Unbalanced Grid," Energies, MDPI, vol. 12(21), pages 1-21, October.
    2. Weiyi Zhang & Daniel Remon & Antoni M. Cantarellas & Pedro Rodriguez, 2016. "A Unified Current Loop Tuning Approach for Grid-Connected Photovoltaic Inverters," Energies, MDPI, vol. 9(9), pages 1-19, September.
    3. Hemakesavulu Oruganti & Subranshu Sekhar Dash & Chellammal Nallaperumal & Sridhar Ramasamy, 2018. "A Proportional Resonant Controller for Suppressing Resonance in Grid Tied Multilevel Inverter," Energies, MDPI, vol. 11(5), pages 1-15, April.
    4. Hani Albalawi & Sherif Ahmed Zaid, 2018. "An H5 Transformerless Inverter for Grid Connected PV Systems with Improved Utilization Factor and a Simple Maximum Power Point Algorithm," Energies, MDPI, vol. 11(11), pages 1-17, October.
    5. Meenakshi Jayaraman & Sreedevi VT, 2017. "Power Quality Improvement in a Cascaded Multilevel Inverter Interfaced Grid Connected System Using a Modified Inductive–Capacitive–Inductive Filter with Reduced Power Loss and Improved Harmonic Attenu," Energies, MDPI, vol. 10(11), pages 1-23, November.
    6. Milovan Majstorovic & Marco Rivera & Leposava Ristic & Patrick Wheeler, 2021. "Comparative Study of Classical and MPC Control for Single-Phase MMC Based on V-HIL Simulations," Energies, MDPI, vol. 14(11), pages 1-17, May.
    7. Jose Miguel Espi & Rafael Garcia-Gil & Jaime Castello, 2017. "Capacitive Emulation for LCL-Filtered Grid-Connected Converters," Energies, MDPI, vol. 10(7), pages 1-15, July.
    8. Zhun Meng & Yi-Feng Wang & Liang Yang & Wei Li, 2017. "Analysis of Power Loss and Improved Simulation Method of a High Frequency Dual-Buck Full-Bridge Inverter," Energies, MDPI, vol. 10(3), pages 1-18, March.
    9. Mohamed A. Hassan & Muhammed Y. Worku & Mohamed A. Abido, 2019. "Optimal Power Control of Inverter-Based Distributed Generations in Grid-Connected Microgrid," Sustainability, MDPI, vol. 11(20), pages 1-27, October.
    10. Jura Arkhangelski & Pedro Roncero-Sánchez & Mahamadou Abdou-Tankari & Javier Vázquez & Gilles Lefebvre, 2019. "Control and Restrictions of a Hybrid Renewable Energy System Connected to the Grid: A Battery and Supercapacitor Storage Case," Energies, MDPI, vol. 12(14), pages 1-23, July.
    11. Shiying Zhou & Xudong Zou & Donghai Zhu & Li Tong & Yong Kang, 2017. "Improved Capacitor Voltage Feedforward for Three-Phase LCL-Type Grid-Connected Converter to Suppress Start-Up Inrush Current," Energies, MDPI, vol. 10(5), pages 1-19, May.
    12. Botong Li & Jianfei Jia & Shimin Xue, 2016. "Study on the Current-Limiting-Capable Control Strategy for Grid-Connected Three-Phase Four-Leg Inverter in Low-Voltage Network," Energies, MDPI, vol. 9(9), pages 1-18, September.
    13. Zaid, S.A. & Kassem, Ahmed M., 2017. "Review, analysis and improving the utilization factor of a PV-grid connected system via HERIC transformerless approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1061-1069.
    14. Xingang Fu & Shuhui Li, 2016. "A Novel Neural Network Vector Control for Single-Phase Grid-Connected Converters with L, LC and LCL Filters," Energies, MDPI, vol. 9(5), pages 1-19, April.
    15. Ibrahim Mohd Alsofyani & Kyo-Beum Lee, 2019. "Improved Deadbeat FC-MPC Based on the Discrete Space Vector Modulation Method with Efficient Computation for a Grid-Connected Three-Level Inverter System," Energies, MDPI, vol. 12(16), pages 1-18, August.
    16. Bingzhang Li & Shenghua Huang & Xi Chen, 2017. "Performance Improvement for Two-Stage Single-Phase Grid-Connected Converters Using a Fast DC Bus Control Scheme and a Novel Synchronous Frame Current Controller," Energies, MDPI, vol. 10(3), pages 1-30, March.
    17. Ling Yang & Yandong Chen & An Luo & Kunshan Huai, 2019. "Admittance Reshaping Control Methods to Mitigate the Interactions between Inverters and Grid," Energies, MDPI, vol. 12(13), pages 1-18, June.
    18. Mostafa Ahmed & Ibrahim Harbi & Ralph Kennel & José Rodríguez & Mohamed Abdelrahem, 2022. "Evaluation of the Main Control Strategies for Grid-Connected PV Systems," Sustainability, MDPI, vol. 14(18), pages 1-20, September.
    19. Xuefeng Jin & Jiahao Liu & Wei Chen & Tingna Shi, 2023. "Optimized Synchronous Pulse Width Modulation Strategy Based on Discontinuous Carriers," Energies, MDPI, vol. 16(5), pages 1-16, March.
    20. Jingrong Yu & Limin Deng & Dongran Song & Maolin Pei, 2019. "Wide Bandwidth Control for Multi-Parallel Grid-Connected Inverters with Harmonic Compensation," Energies, MDPI, vol. 12(3), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4229-:d:593647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.