IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i9p726-d77774.html
   My bibliography  Save this article

Study on the Current-Limiting-Capable Control Strategy for Grid-Connected Three-Phase Four-Leg Inverter in Low-Voltage Network

Author

Listed:
  • Botong Li

    (The Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

  • Jianfei Jia

    (The Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

  • Shimin Xue

    (The Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

Abstract

The three-phase four-leg inverter can produce balanced voltages even with unbalanced loads, yet its controller design is quite complicated. Based on the analysis on time domain equations, a decoupled sequence control strategy for the three-phase four-leg inverter in a low-voltage network is proposed. A negative sequence controller and a zero sequence controller are added to the control strategy besides the positive sequence controller. Furthermore, considering the output limit of the inverter, a current limit design scheme is raised through the analysis on each sequence current in synchronous rotating frame. In the case of asymmetry, the limit value of each sequence current can be adjusted dynamically according to the design scheme. The output currents in each sequence can be controlled and limited for different purposes respectively. Finally, simulation results based on PSCAD/EMTDC V4.5.0 verify the validity of the control strategy.

Suggested Citation

  • Botong Li & Jianfei Jia & Shimin Xue, 2016. "Study on the Current-Limiting-Capable Control Strategy for Grid-Connected Three-Phase Four-Leg Inverter in Low-Voltage Network," Energies, MDPI, vol. 9(9), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:9:p:726-:d:77774
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/9/726/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/9/726/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Miveh, Mohammad Reza & Rahmat, Mohd Fadli & Ghadimi, Ali Asghar & Mustafa, Mohd Wazir, 2016. "Control techniques for three-phase four-leg voltage source inverters in autonomous microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1592-1610.
    2. Xiaobo Dou & Kang Yang & Xiangjun Quan & Qinran Hu & Zaijun Wu & Bo Zhao & Peng Li & Shizhan Zhang & Yang Jiao, 2015. "An Optimal PR Control Strategy with Load Current Observer for a Three-Phase Voltage Source Inverter," Energies, MDPI, vol. 8(8), pages 1-21, July.
    3. Ngoc Bao Lai & Kyeong-Hwa Kim, 2016. "An Improved Current Control Strategy for a Grid-Connected Inverter under Distorted Grid Conditions," Energies, MDPI, vol. 9(3), pages 1-23, March.
    4. Ningyun Zhang & Houjun Tang & Chen Yao, 2014. "A Systematic Method for Designing a PR Controller and Active Damping of the LCL Filter for Single-Phase Grid-Connected PV Inverters," Energies, MDPI, vol. 7(6), pages 1-21, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yixiao Luo & Chunhua Liu & Feng Yu & Christopher H.T. Lee, 2017. "Design and Evaluation of an Efficient Three-Phase Four-Leg Voltage Source Inverter with Reduced IGBTs," Energies, MDPI, vol. 10(4), pages 1-14, April.
    2. Galo Guarderas & Airan Frances & Dionisio Ramirez & Rafael Asensi & Javier Uceda, 2019. "Blackbox Large-Signal Modeling of Grid-Connected DC-AC Electronic Power Converters," Energies, MDPI, vol. 12(6), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weiyi Zhang & Daniel Remon & Antoni M. Cantarellas & Pedro Rodriguez, 2016. "A Unified Current Loop Tuning Approach for Grid-Connected Photovoltaic Inverters," Energies, MDPI, vol. 9(9), pages 1-19, September.
    2. Meenakshi Jayaraman & Sreedevi VT, 2017. "Power Quality Improvement in a Cascaded Multilevel Inverter Interfaced Grid Connected System Using a Modified Inductive–Capacitive–Inductive Filter with Reduced Power Loss and Improved Harmonic Attenu," Energies, MDPI, vol. 10(11), pages 1-23, November.
    3. Zhun Meng & Yi-Feng Wang & Liang Yang & Wei Li, 2017. "High Frequency Dual-Buck Full-Bridge Inverter Utilizing a Dual-Core MCU and Parallel Algorithm for Renewable Energy Applications," Energies, MDPI, vol. 10(3), pages 1-18, March.
    4. Yassir El Karkri & Alexis B. Rey-Boué & Hassan El Moussaoui & Johannes Stöckl & Thomas I. Strasser, 2019. "Improved Control of Grid-connected DFIG-based Wind Turbine using Proportional-Resonant Regulators during Unbalanced Grid," Energies, MDPI, vol. 12(21), pages 1-21, October.
    5. Mohammad Jafar Hadidian Moghaddam & Akhtar Kalam & Mohammad Reza Miveh & Amirreza Naderipour & Foad H. Gandoman & Ali Asghar Ghadimi & Zulkurnain Abdul-Malek, 2018. "Improved Voltage Unbalance and Harmonics Compensation Control Strategy for an Isolated Microgrid," Energies, MDPI, vol. 11(10), pages 1-26, October.
    6. Silpa Baburajan & Haoran Wang & Dinesh Kumar & Qian Wang & Frede Blaabjerg, 2021. "DC-Link Current Harmonic Mitigation via Phase-Shifting of Carrier Waves in Paralleled Inverter Systems," Energies, MDPI, vol. 14(14), pages 1-17, July.
    7. Jura Arkhangelski & Pedro Roncero-Sánchez & Mahamadou Abdou-Tankari & Javier Vázquez & Gilles Lefebvre, 2019. "Control and Restrictions of a Hybrid Renewable Energy System Connected to the Grid: A Battery and Supercapacitor Storage Case," Energies, MDPI, vol. 12(14), pages 1-23, July.
    8. Hemakesavulu Oruganti & Subranshu Sekhar Dash & Chellammal Nallaperumal & Sridhar Ramasamy, 2018. "A Proportional Resonant Controller for Suppressing Resonance in Grid Tied Multilevel Inverter," Energies, MDPI, vol. 11(5), pages 1-15, April.
    9. Shiying Zhou & Xudong Zou & Donghai Zhu & Li Tong & Yong Kang, 2017. "Improved Capacitor Voltage Feedforward for Three-Phase LCL-Type Grid-Connected Converter to Suppress Start-Up Inrush Current," Energies, MDPI, vol. 10(5), pages 1-19, May.
    10. Rizka Bimarta & Thuy Vi Tran & Kyeong-Hwa Kim, 2018. "Frequency-Adaptive Current Controller Design Based on LQR State Feedback Control for a Grid-Connected Inverter under Distorted Grid," Energies, MDPI, vol. 11(10), pages 1-29, October.
    11. Zaid, S.A. & Kassem, Ahmed M., 2017. "Review, analysis and improving the utilization factor of a PV-grid connected system via HERIC transformerless approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1061-1069.
    12. Junhui Li & Tianyang Zhang & Lei Qi & Gangui Yan, 2017. "A Method for the Realization of an Interruption Generator Based on Voltage Source Converters," Energies, MDPI, vol. 10(10), pages 1-19, October.
    13. Xingang Fu & Shuhui Li, 2016. "A Novel Neural Network Vector Control for Single-Phase Grid-Connected Converters with L, LC and LCL Filters," Energies, MDPI, vol. 9(5), pages 1-19, April.
    14. Hani Albalawi & Sherif Ahmed Zaid, 2018. "An H5 Transformerless Inverter for Grid Connected PV Systems with Improved Utilization Factor and a Simple Maximum Power Point Algorithm," Energies, MDPI, vol. 11(11), pages 1-17, October.
    15. Bingzhang Li & Shenghua Huang & Xi Chen, 2017. "Performance Improvement for Two-Stage Single-Phase Grid-Connected Converters Using a Fast DC Bus Control Scheme and a Novel Synchronous Frame Current Controller," Energies, MDPI, vol. 10(3), pages 1-30, March.
    16. Boris Dumnic & Bane Popadic & Dragan Milicevic & Nikola Vukajlovic & Marko Delimar, 2019. "Control Strategy for a Grid Connected Converter in Active Unbalanced Distribution Systems," Energies, MDPI, vol. 12(7), pages 1-18, April.
    17. Yixiao Luo & Chunhua Liu & Feng Yu & Christopher H.T. Lee, 2017. "Design and Evaluation of an Efficient Three-Phase Four-Leg Voltage Source Inverter with Reduced IGBTs," Energies, MDPI, vol. 10(4), pages 1-14, April.
    18. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.
    19. Mohammed Azharuddin Shamshuddin & Felix Rojas & Roberto Cardenas & Javier Pereda & Matias Diaz & Ralph Kennel, 2020. "Solid State Transformers: Concepts, Classification, and Control," Energies, MDPI, vol. 13(9), pages 1-35, May.
    20. Ling Yang & Yandong Chen & An Luo & Kunshan Huai, 2019. "Admittance Reshaping Control Methods to Mitigate the Interactions between Inverters and Grid," Energies, MDPI, vol. 12(13), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:9:p:726-:d:77774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.