IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i4p709-d137429.html
   My bibliography  Save this article

Energy Non-Availability in Distribution Grids with Heavy Penetration of Solar Power: Assessment and Mitigation through Solar Smoother

Author

Listed:
  • Tathagata Sarkar

    (Centre of Excellence for Green Energy and Sensor Systems, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India)

  • Ankur Bhattacharjee

    (Centre of Excellence for Green Energy and Sensor Systems, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India)

  • Kanak Mukhopadhyay

    (Agni Power and Electronics Pvt. Ltd., Kolkata 700107, India)

  • Konika Das Bhattacharya

    (Department of Electrical Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India)

  • Hiranmay Saha

    (Centre of Excellence for Green Energy and Sensor Systems, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India)

Abstract

Rapid fluctuation of solar irradiance due to cloud passage causes corresponding variations in the power output of solar PV power plants. This leads to rapid voltage instability at the point of common coupling (PCC) of the connected grid which may cause temporary shutdown of the plant leading to non-availability of energy in the connected load and distribution grid. An estimate of the duration and frequency of this outage is important for solar energy generators to ensure the generation and performance of the solar power plant. A methodology using PVsyst (6.6.4, University of Geneva, Geneva, Switzerland) and PSCAD (4.5, Manitoba HVDC Research Centre, Winnipeg, MB, Canada) simulation has been developed to estimate the duration and frequency of power outages due to rapid fluctuation of solar irradiance throughout the year. It is shown that the outage depends not only on the solar irradiance fluctuation, but also on the grid parameters of the connected distribution grid. A practical case study has been done on a 500 kilo Watt peak (kWp) solar PV power plant for validation of the proposed methodology. It is observed that the energy non-availability for this plant is about 13% per year. This can be reduced to 8% by incorporating a solar smoother. A financial analysis of this outage and its mitigation has also been carried out.

Suggested Citation

  • Tathagata Sarkar & Ankur Bhattacharjee & Kanak Mukhopadhyay & Konika Das Bhattacharya & Hiranmay Saha, 2018. "Energy Non-Availability in Distribution Grids with Heavy Penetration of Solar Power: Assessment and Mitigation through Solar Smoother," Energies, MDPI, vol. 11(4), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:709-:d:137429
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/4/709/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/4/709/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Javier Marcos & Iñigo De la Parra & Miguel García & Luis Marroyo, 2014. "Control Strategies to Smooth Short-Term Power Fluctuations in Large Photovoltaic Plants Using Battery Storage Systems," Energies, MDPI, vol. 7(10), pages 1-27, October.
    2. Linda Barelli & Gianni Bidini & Fabio Bonucci & Luca Castellini & Simone Castellini & Andrea Ottaviano & Dario Pelosi & Alberto Zuccari, 2018. "Dynamic Analysis of a Hybrid Energy Storage System (H-ESS) Coupled to a Photovoltaic (PV) Plant," Energies, MDPI, vol. 11(2), pages 1-23, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gonzalo Suanes & David Bolonio & Antonio Cantero, 2023. "Definition of the Thermodynamic Cycle of a Biomass-Fueled Internal Combustion Engine," Energies, MDPI, vol. 16(2), pages 1-29, January.
    2. Majid Ghaffarianfar & Amin Hajizadeh, 2018. "Voltage Stability of Low-Voltage Distribution Grid with High Penetration of Photovoltaic Power Units," Energies, MDPI, vol. 11(8), pages 1-13, July.
    3. Abhi Chatterjee & Daniel Burmester & Alan Brent & Ramesh Rayudu, 2019. "Research Insights and Knowledge Headways for Developing Remote, Off-Grid Microgrids in Developing Countries," Energies, MDPI, vol. 12(10), pages 1-19, May.
    4. Pierro, Marco & Perez, Richard & Perez, Marc & Prina, Matteo Giacomo & Moser, David & Cornaro, Cristina, 2021. "Italian protocol for massive solar integration: From solar imbalance regulation to firm 24/365 solar generation," Renewable Energy, Elsevier, vol. 169(C), pages 425-436.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Federica Cucchiella & Idiano D’Adamo & Paolo Rosa, 2015. "Industrial Photovoltaic Systems: An Economic Analysis in Non-Subsidized Electricity Markets," Energies, MDPI, vol. 8(11), pages 1-16, November.
    2. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
    3. Arévalo, Paul & Benavides, Dario & Tostado-Véliz, Marcos & Aguado, José A. & Jurado, Francisco, 2023. "Smart monitoring method for photovoltaic systems and failure control based on power smoothing techniques," Renewable Energy, Elsevier, vol. 205(C), pages 366-383.
    4. Fan Wu & Jun Wang & Zhang Sun & Tao Wang & Lei Chen & Xiaoyan Han, 2019. "An Optimal Wavelet Packets Basis Method for Cascade Hydro-PV-Pumped Storage Generation Systems to Smooth Photovoltaic Power Fluctuations," Energies, MDPI, vol. 12(24), pages 1-22, December.
    5. Hafiz Abdul Muqeet & Rehan Liaqat & Mohsin Jamil & Asharf Ali Khan, 2023. "A State-of-the-Art Review of Smart Energy Systems and Their Management in a Smart Grid Environment," Energies, MDPI, vol. 16(1), pages 1-23, January.
    6. Gonzalez-Moreno, A. & Marcos, J. & de la Parra, I. & Marroyo, L., 2022. "A PV ramp-rate control strategy to extend battery lifespan using forecasting," Applied Energy, Elsevier, vol. 323(C).
    7. Linda Barelli & Ermanno Cardelli & Dario Pelosi & Dana Alexandra Ciupageanu & Panfilo Andrea Ottaviano & Michela Longo & Dario Zaninelli, 2021. "Energy from the Waves: Integration of a HESS to a Wave Energy Converter in a DC Bus Electrical Architecture to Enhance Grid Power Quality," Energies, MDPI, vol. 15(1), pages 1-16, December.
    8. Haupt, Leon & Schöpf, Michael & Wederhake, Lars & Weibelzahl, Martin, 2020. "The influence of electric vehicle charging strategies on the sizing of electrical energy storage systems in charging hub microgrids," Applied Energy, Elsevier, vol. 273(C).
    9. Jae Woong Shim & Heejin Kim & Kyeon Hur, 2019. "Incorporating State-of-Charge Balancing into the Control of Energy Storage Systems for Smoothing Renewable Intermittency," Energies, MDPI, vol. 12(7), pages 1-13, March.
    10. Olexandr Shavolkin & Iryna Shvedchykova & Michal Kolcun & Dušan Medveď, 2023. "Improvement of a Hybrid Solar-Wind System for Self-Consumption of a Local Object with Control of the Power Consumed from the Grid," Energies, MDPI, vol. 16(15), pages 1-21, August.
    11. Wei Ma & Wei Wang & Xuezhi Wu & Ruonan Hu & Fen Tang & Weige Zhang, 2019. "Control Strategy of a Hybrid Energy Storage System to Smooth Photovoltaic Power Fluctuations Considering Photovoltaic Output Power Curtailment," Sustainability, MDPI, vol. 11(5), pages 1-22, March.
    12. Efstathios E. Michaelides, 2021. "Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review," Energies, MDPI, vol. 14(19), pages 1-41, September.
    13. Linda Barelli & Gianni Bidini & Federico Gallorini & Francesco Iantorno & Nicola Pane & Panfilo Andrea Ottaviano & Lorenzo Trombetti, 2018. "Dynamic Modeling of a Hybrid Propulsion System for Tourist Boat," Energies, MDPI, vol. 11(10), pages 1-17, September.
    14. João Paulo N. Torres & Carlos A. F. Fernandes & João Gomes & Bonfiglio Luc & Giovinazzo Carine & Olle Olsson & P. J. Costa Branco, 2018. "Effect of Reflector Geometry in the Annual Received Radiation of Low Concentration Photovoltaic Systems," Energies, MDPI, vol. 11(7), pages 1-15, July.
    15. Barelli, L. & Bidini, G. & Pelosi, D. & Ciupageanu, D.A. & Cardelli, E. & Castellini, S. & Lăzăroiu, G., 2020. "Comparative analysis of AC and DC bus configurations for flywheel-battery HESS integration in residential micro-grids," Energy, Elsevier, vol. 204(C).
    16. Thijs Van der Klauw & Johann L. Hurink & Gerard J. M. Smit, 2016. "Scheduling of Electricity Storage for Peak Shaving with Minimal Device Wear," Energies, MDPI, vol. 9(6), pages 1-19, June.
    17. José Manuel Salmerón Lissén & Laura Romero Rodríguez & Francisco Durán Parejo & Francisco José Sánchez de la Flor, 2018. "An Economic, Energy, and Environmental Analysis of PV/Micro-CHP Hybrid Systems: A Case Study of a Tertiary Building," Sustainability, MDPI, vol. 10(11), pages 1-15, November.
    18. Giuseppe Todde & Lelia Murgia & Isaac Carrelo & Rita Hogan & Antonio Pazzona & Luigi Ledda & Luis Narvarte, 2018. "Embodied Energy and Environmental Impact of Large-Power Stand-Alone Photovoltaic Irrigation Systems," Energies, MDPI, vol. 11(8), pages 1-15, August.
    19. Yingpei Liu & Yan Li & Haiping Liang & Jia He & Hanyang Cui, 2019. "Energy Routing Control Strategy for Integrated Microgrids Including Photovoltaic, Battery-Energy Storage and Electric Vehicles," Energies, MDPI, vol. 12(2), pages 1-16, January.
    20. Igor Cavalcante Torres & Daniel M. Farias & Andre L. L. Aquino & Chigueru Tiba, 2021. "Voltage Regulation For Residential Prosumers Using a Set of Scalable Power Storage," Energies, MDPI, vol. 14(11), pages 1-28, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:709-:d:137429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.