IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2017i1p52-d124524.html
   My bibliography  Save this article

Coordinated Control of Wind Turbine and Energy Storage System for Reducing Wind Power Fluctuation

Author

Listed:
  • Chunghun Kim

    (Department of Electrical Engineering, Hanyang University, Seoul 133-791, Korea)

  • Eduard Muljadi

    (National Renewable Energy Laboratory, Golden, CO 80401, USA)

  • Chung Choo Chung

    (Department of Electrical Engineering, Hanyang University, Seoul 133-791, Korea)

Abstract

This paper proposes a method for the coordinated control of a wind turbine and an energy storage system (ESS). Because wind power (WP) is highly dependent on wind speed, which is variable, severe stability problems can be caused in power systems, especially when the WP has a high penetration level. To solve this problem, many power generation corporations or grid operators have begun using ESSs. An ESS has very quick response and good performance for reducing the impact of WP fluctuation; however, its installation cost is high. Therefore, it is important to design the control algorithm by considering both the ESS capacity and WP fluctuation. Thus, we propose a control algorithm to mitigate the WP fluctuation by using the coordinated control between the wind turbine and the ESS by considering the ESS capacity and the WP fluctuation. Using de-loaded control, according to the WP fluctuation and ESS capacity, we can expand the ESS lifespan and improve grid reliability by avoiding the extreme value of state of charge (SoC) (i.e., 0 or 1 pu). The effectiveness of the proposed method was validated via MATLAB/Simulink by considering a small power system that includes both a wind turbine generator and conventional generators that react to system frequency deviation. We found that the proposed method has better performance in SoC management, thereby improving the frequency regulation by mitigating the impact of the WP fluctuation on the small power system.

Suggested Citation

  • Chunghun Kim & Eduard Muljadi & Chung Choo Chung, 2017. "Coordinated Control of Wind Turbine and Energy Storage System for Reducing Wind Power Fluctuation," Energies, MDPI, vol. 11(1), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:11:y:2017:i:1:p:52-:d:124524
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/52/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/52/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei Wang & Chengxiong Mao & Jiming Lu & Dan Wang, 2013. "An Energy Storage System Sizing Method for Wind Power Integration," Energies, MDPI, vol. 6(7), pages 1-13, July.
    2. Xisheng Tang & Yushu Sun & Guopeng Zhou & Fufeng Miao, 2017. "Coordinated Control of Multi-Type Energy Storage for Wind Power Fluctuation Suppression," Energies, MDPI, vol. 10(8), pages 1-16, August.
    3. Calif, Rudy & Schmitt, François G. & Huang, Yongxiang, 2013. "Multifractal description of wind power fluctuations using arbitrary order Hilbert spectral analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4106-4120.
    4. Jin-Sun Yang & Jin-Young Choi & Geon-Ho An & Young-Jun Choi & Myoung-Hoe Kim & Dong-Jun Won, 2016. "Optimal Scheduling and Real-Time State-of-Charge Management of Energy Storage System for Frequency Regulation," Energies, MDPI, vol. 9(12), pages 1-13, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhe Jiang & Xueshan Han & Zhimin Li & Mingqiang Wang & Guodong Liu & Mengxia Wang & Wenbo Li & Thomas B. Ollis, 2018. "Capacity Optimization of a Centralized Charging Station in Joint Operation with a Wind Farm," Energies, MDPI, vol. 11(5), pages 1-18, May.
    2. Danny Ochoa & Sergio Martinez, 2018. "Proposals for Enhancing Frequency Control in Weak and Isolated Power Systems: Application to the Wind-Diesel Power System of San Cristobal Island-Ecuador," Energies, MDPI, vol. 11(4), pages 1-25, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Durán Medina, Olmo & Schmitt, François G. & Calif, Rudy & Germain, Grégory & Gaurier, Benoît, 2017. "Turbulence analysis and multiscale correlations between synchronized flow velocity and marine turbine power production," Renewable Energy, Elsevier, vol. 112(C), pages 314-327.
    2. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    3. Micke Talvi & Tomi Roinila & Kari Lappalainen, 2023. "Effects of Ramp Rate Limit on Sizing of Energy Storage Systems for PV, Wind and PV–Wind Power Plants," Energies, MDPI, vol. 16(11), pages 1-18, May.
    4. Timur Yunusov & Maximilian J. Zangs & William Holderbaum, 2017. "Control of Energy Storage," Energies, MDPI, vol. 10(7), pages 1-5, July.
    5. Giovanni Gualtieri, 2021. "Reliability of ERA5 Reanalysis Data for Wind Resource Assessment: A Comparison against Tall Towers," Energies, MDPI, vol. 14(14), pages 1-21, July.
    6. Colak, Ilhami & Kabalci, Ersan & Fulli, Gianluca & Lazarou, Stavros, 2015. "A survey on the contributions of power electronics to smart grid systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 562-579.
    7. Li, Muyi & Huang, Yongxiang, 2014. "Hilbert–Huang Transform based multifractal analysis of China stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 222-229.
    8. Lahmiri, Salim, 2015. "Long memory in international financial markets trends and short movements during 2008 financial crisis based on variational mode decomposition and detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 130-138.
    9. Soledad Torres & Ciprian A. Tudor, 2018. "The Multifractal Random Walk as Pathwise Stochastic Integral: Construction and Simulation," Journal of Theoretical Probability, Springer, vol. 31(1), pages 445-465, March.
    10. Hongyu Li & Ping Ju & Chun Gan & Feng Wu & Yichen Zhou & Zhe Dong, 2018. "Stochastic Stability Analysis of the Power System with Losses," Energies, MDPI, vol. 11(3), pages 1-11, March.
    11. Amin Allah, Veisi & Shafiei Mayam, Mohammad Hossein, 2017. "Large Eddy Simulation of flow around a single and two in-line horizontal-axis wind turbines," Energy, Elsevier, vol. 121(C), pages 533-544.
    12. Hun-Chul Seo, 2017. "New Configuration and Novel Reclosing Procedure of Distribution System for Utilization of BESS as UPS in Smart Grid," Sustainability, MDPI, vol. 9(4), pages 1-16, March.
    13. Fabio Bignucolo & Alberto Cerretti & Massimiliano Coppo & Andrea Savio & Roberto Turri, 2017. "Impact of Distributed Generation Grid Code Requirements on Islanding Detection in LV Networks," Energies, MDPI, vol. 10(2), pages 1-16, January.
    14. Paolo Scarabaggio & Raffaele Carli & Graziana Cavone & Mariagrazia Dotoli, 2020. "Smart Control Strategies for Primary Frequency Regulation through Electric Vehicles: A Battery Degradation Perspective," Energies, MDPI, vol. 13(17), pages 1-19, September.
    15. Thai-Thanh Nguyen & Hyeong-Jun Yoo & Hak-Man Kim, 2017. "Analyzing the Impacts of System Parameters on MPC-Based Frequency Control for a Stand-Alone Microgrid," Energies, MDPI, vol. 10(4), pages 1-17, March.
    16. Gimara Rajapakse & Shantha Jayasinghe & Alan Fleming, 2020. "Power Smoothing and Energy Storage Sizing of Vented Oscillating Water Column Wave Energy Converter Arrays," Energies, MDPI, vol. 13(5), pages 1-13, March.
    17. Mengying Chen & Yifeng Wang & Liang Yang & Fuqiang Han & Yuqi Hou & Haiyun Yan, 2018. "A Variable-Structure Multi-Resonant DC–DC Converter with Smooth Switching," Energies, MDPI, vol. 11(9), pages 1-21, August.
    18. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2018. "Battery energy storage system size determination in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 109-125.
    19. Bartosz Ceran & Agata Orłowska, 2019. "The Impact of Power Source Performance Decrease in a PV/WT/FC Hybrid Power Generation System on the Result of a Multi-Criteria Analysis of Load Distribution," Energies, MDPI, vol. 12(18), pages 1-19, September.
    20. Xiaodong Yu & Xia Dong & Shaopeng Pang & Luanai Zhou & Hongzhi Zang, 2019. "Energy Storage Sizing Optimization and Sensitivity Analysis Based on Wind Power Forecast Error Compensation," Energies, MDPI, vol. 12(24), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2017:i:1:p:52-:d:124524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.