IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i9p1249-d109402.html
   My bibliography  Save this article

Numerical Simulation and Optimization of the Melting Process of Phase Change Material inside Horizontal Annulus

Author

Listed:
  • Saiwei Li

    (School of Energy Science and Engineering, Central South University, Changsha 410083, China)

  • Yu Chen

    (School of Energy Science and Engineering, Central South University, Changsha 410083, China)

  • Zhiqiang Sun

    (School of Energy Science and Engineering, Central South University, Changsha 410083, China)

Abstract

Latent heat storage (LHS) technologies adopting phase change materials (PCMs) are increasingly being used to bridge the spatiotemporal mismatch between energy production and demand, especially in industries like solar power, where strong cyclic fluctuations exist. The shell-and-tube configuration is among the most prevalent ones in LHS and thus draws special attention from researchers. This paper presents numerical investigations on the melting of PCM, a paraffin blend RT27, inside a horizontal annulus. The volume of fluid model was adopted to permit density changes with the solidification/melting model wherein natural convection was taken into account. The eccentricity and diameter of the inner tube, sub-cooling degree of the PCM, and the heating-surface temperature were considered as variables for study. Through the evaluation of the melting time and exergy efficiency, the optimal parameters of the horizontal annulus were obtained. The results showed that the higher the heating boundary temperature, the earlier the convection appeared and the shorter the melting time. Also, the different eccentricity and diameters of the inner tube influenced the annulus tube interior temperature distribution, which in turn determined the strength and distribution of the resulting natural convection, resulting in varying melting rates.

Suggested Citation

  • Saiwei Li & Yu Chen & Zhiqiang Sun, 2017. "Numerical Simulation and Optimization of the Melting Process of Phase Change Material inside Horizontal Annulus," Energies, MDPI, vol. 10(9), pages 1-14, August.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1249-:d:109402
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/9/1249/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/9/1249/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Qiyuan & Tehrani, S. Saeed Mostafavi & Taylor, Robert A., 2017. "Techno-economic analysis of a concentrating solar collector with built-in shell and tube latent heat thermal energy storage," Energy, Elsevier, vol. 121(C), pages 220-237.
    2. Wenqiang Sun & Zuquan Zhao & Yanhui Wang, 2017. "Thermal Analysis of a Thermal Energy Storage Unit to Enhance a Workshop Heating System Driven by Industrial Residual Water," Energies, MDPI, vol. 10(2), pages 1-19, February.
    3. Tao, Y.B. & Carey, V.P., 2016. "Effects of PCM thermophysical properties on thermal storage performance of a shell-and-tube latent heat storage unit," Applied Energy, Elsevier, vol. 179(C), pages 203-210.
    4. Fornarelli, F. & Camporeale, S.M. & Fortunato, B. & Torresi, M. & Oresta, P. & Magliocchetti, L. & Miliozzi, A. & Santo, G., 2016. "CFD analysis of melting process in a shell-and-tube latent heat storage for concentrated solar power plants," Applied Energy, Elsevier, vol. 164(C), pages 711-722.
    5. Zhang, P. & Xiao, X. & Ma, Z.W., 2016. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement," Applied Energy, Elsevier, vol. 165(C), pages 472-510.
    6. Gasia, Jaume & Tay, N.H. Steven & Belusko, Martin & Cabeza, Luisa F. & Bruno, Frank, 2017. "Experimental investigation of the effect of dynamic melting in a cylindrical shell-and-tube heat exchanger using water as PCM," Applied Energy, Elsevier, vol. 185(P1), pages 136-145.
    7. Sebastian Kuboth & Andreas König-Haagen & Dieter Brüggemann, 2017. "Numerical Analysis of Shell-and-Tube Type Latent Thermal Energy Storage Performance with Different Arrangements of Circular Fins," Energies, MDPI, vol. 10(3), pages 1-14, February.
    8. Riahi, Soheila & Saman, Wasim Y. & Bruno, Frank & Belusko, Martin & Tay, N.H.S., 2017. "Impact of periodic flow reversal of heat transfer fluid on the melting and solidification processes in a latent heat shell and tube storage system," Applied Energy, Elsevier, vol. 191(C), pages 276-286.
    9. Tehrani, S. Saeed Mostafavi & Taylor, Robert A. & Saberi, Pouya & Diarce, Gonzalo, 2016. "Design and feasibility of high temperature shell and tube latent heat thermal energy storage system for solar thermal power plants," Renewable Energy, Elsevier, vol. 96(PA), pages 120-136.
    10. Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xue Chen & Chuang Sun & Xinlin Xia & Rongqiang Liu, 2018. "Numerical Analysis on the Radiation-Convection Coupled Heat Transfer in an Open-Cell Foam Filled Annulus," Energies, MDPI, vol. 11(10), pages 1-20, October.
    2. Huanmei Yuan & Hao Bai & Minghui Chi & Xu Zhang & Jian Zhang & Zefei Zhang & Liyun Yang, 2019. "A Novel Encapsulation Method for Phase Change Materials with a AgBr Shell as a Thermal Energy Storage Material," Energies, MDPI, vol. 12(4), pages 1-12, February.
    3. Mohammad Reza Safaei & Hamid Reza Goshayeshi & Issa Chaer, 2019. "Solar Still Efficiency Enhancement by Using Graphene Oxide/Paraffin Nano-PCM," Energies, MDPI, vol. 12(10), pages 1-13, May.
    4. Sheikholeslami, M. & Jafaryar, M. & Shafee, Ahmad & Li, Zhixiong, 2019. "Simulation of nanoparticles application for expediting melting of PCM inside a finned enclosure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 544-556.
    5. Ewelina Radomska & Lukasz Mika & Karol Sztekler & Lukasz Lis, 2020. "The Impact of Heat Exchangers’ Constructions on the Melting and Solidification Time of Phase Change Materials," Energies, MDPI, vol. 13(18), pages 1-44, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Nithyanandam, Karthik & Taylor, Robert A., 2019. "Shell-and-tube or packed bed thermal energy storage systems integrated with a concentrated solar power: A techno-economic comparison of sensible and latent heat systems," Applied Energy, Elsevier, vol. 238(C), pages 887-910.
    2. Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Diarce, Gonzalo & Taylor, Robert A., 2019. "An improved, generalized effective thermal conductivity method for rapid design of high temperature shell-and-tube latent heat thermal energy storage systems," Renewable Energy, Elsevier, vol. 132(C), pages 694-708.
    3. Xun Yang & Teng Xiong & Jing Liang Dong & Wen Xin Li & Yong Wang, 2017. "Investigation of the Dynamic Melting Process in a Thermal Energy Storage Unit Using a Helical Coil Heat Exchanger," Energies, MDPI, vol. 10(8), pages 1-18, August.
    4. Zauner, Christoph & Hengstberger, Florian & Mörzinger, Benjamin & Hofmann, Rene & Walter, Heimo, 2017. "Experimental characterization and simulation of a hybrid sensible-latent heat storage," Applied Energy, Elsevier, vol. 189(C), pages 506-519.
    5. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Zhu, Ming & Nan, Wenguang & Wang, Yueshe, 2023. "Analysis on the thermal behaviour of the latent heat storage system using S-CO2 and H-PCM," Renewable Energy, Elsevier, vol. 208(C), pages 240-250.
    7. Seddegh, Saeid & Wang, Xiaolin & Joybari, Mahmood Mastani & Haghighat, Fariborz, 2017. "Investigation of the effect of geometric and operating parameters on thermal behavior of vertical shell-and-tube latent heat energy storage systems," Energy, Elsevier, vol. 137(C), pages 69-82.
    8. Nassima Radouane, 2022. "A Comprehensive Review of Composite Phase Change Materials (cPCMs) for Thermal Management Applications, Including Manufacturing Processes, Performance, and Applications," Energies, MDPI, vol. 15(21), pages 1-28, November.
    9. Hu, Nan & Li, Zi-Rui & Xu, Zhe-Wen & Fan, Li-Wu, 2022. "Rapid charging for latent heat thermal energy storage: A state-of-the-art review of close-contact melting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    10. Tao, Y.B. & He, Ya-Ling, 2018. "A review of phase change material and performance enhancement method for latent heat storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 245-259.
    11. Li, Yantong & Huang, Gongsheng & Xu, Tao & Liu, Xiaoping & Wu, Huijun, 2018. "Optimal design of PCM thermal storage tank and its application for winter available open-air swimming pool," Applied Energy, Elsevier, vol. 209(C), pages 224-235.
    12. Xu, Haoxin & Romagnoli, Alessandro & Sze, Jia Yin & Py, Xavier, 2017. "Application of material assessment methodology in latent heat thermal energy storage for waste heat recovery," Applied Energy, Elsevier, vol. 187(C), pages 281-290.
    13. Ahmed Hassan & Mohammad Shakeel Laghari & Yasir Rashid, 2016. "Micro-Encapsulated Phase Change Materials: A Review of Encapsulation, Safety and Thermal Characteristics," Sustainability, MDPI, vol. 8(10), pages 1-32, October.
    14. Diao, Yanhua & Kang, Yameng & Liang, Lin & Zhao, Yaohua & Zhu, Tingting, 2017. "Experimental investigation on the heat transfer performance of a latent thermal energy storage device based on flat miniature heat pipe arrays," Energy, Elsevier, vol. 138(C), pages 929-941.
    15. Liu, Ming & Riahi, Soheila & Jacob, Rhys & Belusko, Martin & Bruno, Frank, 2020. "Design of sensible and latent heat thermal energy storage systems for concentrated solar power plants: Thermal performance analysis," Renewable Energy, Elsevier, vol. 151(C), pages 1286-1297.
    16. Zhou, Dan & Wu, Shaowen & Wu, Zhigen & Yu, Xingjuan, 2021. "Thermal performance analysis of multi-slab phase change thermal energy storage unit with heat transfer enhancement approaches," Renewable Energy, Elsevier, vol. 172(C), pages 46-56.
    17. Zhang, Shuai & Feng, Daili & Shi, Lei & Wang, Li & Jin, Yingai & Tian, Limei & Li, Ziyuan & Wang, Guoyong & Zhao, Lei & Yan, Yuying, 2021. "A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Pirasaci, Tolga & Wickramaratne, Chatura & Moloney, Francesca & Yogi Goswami, D. & Stefanakos, Elias, 2017. "Dynamics of phase change in a vertical PCM capsule in the presence of radiation at high temperatures," Applied Energy, Elsevier, vol. 206(C), pages 498-506.
    19. Giménez, P. & Jové, A. & Prieto, C. & Fereres, S., 2017. "Effect of an increased thermal contact resistance in a salt PCM-graphite foam composite TES system," Renewable Energy, Elsevier, vol. 106(C), pages 321-334.
    20. Tang, Yaojie & Su, Di & Huang, Xiang & Alva, Guruprasad & Liu, Lingkun & Fang, Guiyin, 2016. "Synthesis and thermal properties of the MA/HDPE composites with nano-additives as form-stable PCM with improved thermal conductivity," Applied Energy, Elsevier, vol. 180(C), pages 116-129.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1249-:d:109402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.