IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i7p945-d104015.html
   My bibliography  Save this article

Performance Characteristics of a 4 × 6 Oil-Free Twin-Screw Compressor

Author

Listed:
  • Sun-Seok Byeon

    (Graduate School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea)

  • Jae-Young Lee

    (YUJIN Machinery Ltd, Ansan 15433, Korea)

  • Youn-Jea Kim

    (School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea)

Abstract

The screw compressor in the early stage of development is generally known as the oil-injection type. However, escalating environmental problems and advances in electronic components have spurred continuous R & D to minimize the oil content in compressed air. The oil-free twin-screw compressor is continuously compressed by inner volumetric change between rotors and casing. For this reason, in order to predict the overall performance of the screw compressor at the early stage of the design process, industry still relies on the empirical method. However, it is difficult using the existing empirical method to gain more information of the inner fluid flow of the twin-screw compressor. Flow simulation techniques using CFD are required. This study presents applications of a recently proposed overset grid method to the solution of the flow around a moving boundary. In order to analyze the performance of a 4 × 6 oil-free screw compressor, the 3-D, unsteady and compressible flow fields were numerically calculated with a shear stress transport (SST) turbulence model, and implemented by the commercial software, Star-CCM+. The pressure distributions were calculated and graphically depicted. Results also showed that the volumetric and adiabatic efficiencies of the screw compressor measured by the experiments were 78% and 71%, respectively.

Suggested Citation

  • Sun-Seok Byeon & Jae-Young Lee & Youn-Jea Kim, 2017. "Performance Characteristics of a 4 × 6 Oil-Free Twin-Screw Compressor," Energies, MDPI, vol. 10(7), pages 1-16, July.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:945-:d:104015
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/7/945/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/7/945/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Yuwei & Paik, Kwang-Jun & Xing, Tao & Carrica, Pablo M., 2012. "Dynamic overset CFD simulations of wind turbine aerodynamics," Renewable Energy, Elsevier, vol. 37(1), pages 285-298.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhilong He & Tao Wang & Xiaolin Wang & Xueyuan Peng & Ziwen Xing, 2018. "Experimental Investigation into the Effect of Oil Injection on the Performance of a Variable Speed Twin-Screw Compressor," Energies, MDPI, vol. 11(6), pages 1-14, May.
    2. Tao Wang & Qiang Qi & Wei Zhang & Dengyi Zhan, 2023. "Research on Optimization of Profile Parameters in Screw Compressor Based on BP Neural Network and Genetic Algorithm," Energies, MDPI, vol. 16(9), pages 1-17, April.
    3. Huagen Wu & Hao Huang & Beiyu Zhang & Baoshun Xiong & Kanlong Lin, 2019. "CFD Simulation and Experimental Study of Working Process of Screw Refrigeration Compressor with R134a," Energies, MDPI, vol. 12(11), pages 1-14, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Jie & Lei, Hang & Zhou, Dai & Han, Zhaolong & Bao, Yan & Zhu, Hongbo & Zhou, Lei, 2019. "Aerodynamic noise assessment for a vertical axis wind turbine using Improved Delayed Detached Eddy Simulation," Renewable Energy, Elsevier, vol. 141(C), pages 559-569.
    2. Rocha, P. A. Costa & Rocha, H. H. Barbosa & Carneiro, F. O. Moura & da Silva, M. E. Vieira & de Andrade, C. Freitas, 2016. "A case study on the calibration of the k–ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils," Energy, Elsevier, vol. 97(C), pages 144-150.
    3. Youjin Kim & Galih Bangga & Antonio Delgado, 2020. "Investigations of HAWT Airfoil Shape Characteristics and 3D Rotational Augmentation Sensitivity Toward the Aerodynamic Performance Improvement," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    4. Brown, S.A. & Ransley, E.J. & Greaves, D.M., 2020. "Developing a coupled turbine thrust methodology for floating tidal stream concepts: Verification under prescribed motion," Renewable Energy, Elsevier, vol. 147(P1), pages 529-540.
    5. Lee, Kyoungsoo & Huque, Ziaul & Kommalapati, Raghava & Han, Sang-Eul, 2016. "Evaluation of equivalent structural properties of NREL phase VI wind turbine blade," Renewable Energy, Elsevier, vol. 86(C), pages 796-818.
    6. Liu, Yuanchuan & Xiao, Qing & Incecik, Atilla & Peyrard, Christophe & Wan, Decheng, 2017. "Establishing a fully coupled CFD analysis tool for floating offshore wind turbines," Renewable Energy, Elsevier, vol. 112(C), pages 280-301.
    7. Miller, Aaron & Chang, Byungik & Issa, Roy & Chen, Gerald, 2013. "Review of computer-aided numerical simulation in wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 122-134.
    8. Li, Qing’an & Xu, Jianzhong & Kamada, Yasunari & Takao, Maeda & Nishimura, Shogo & Wu, Guangxing & Cai, Chang, 2020. "Experimental investigations of airfoil surface flow of a horizontal axis wind turbine with LDV measurements," Energy, Elsevier, vol. 191(C).
    9. Liu, Pengyin & Yu, Guohua & Zhu, Xiaocheng & Du, Zhaohui, 2014. "Unsteady aerodynamic prediction for dynamic stall of wind turbine airfoils with the reduced order modeling," Renewable Energy, Elsevier, vol. 69(C), pages 402-409.
    10. Tang, Di & Bao, Shiyi & Luo, Lijia & Mao, Jianfeng & Lv, Binbin & Guo, Hongtao, 2017. "Study on the aeroelastic responses of a wind turbine using a coupled multibody-FVW method," Energy, Elsevier, vol. 141(C), pages 2300-2313.
    11. Amin Allah, Veisi & Shafiei Mayam, Mohammad Hossein, 2017. "Large Eddy Simulation of flow around a single and two in-line horizontal-axis wind turbines," Energy, Elsevier, vol. 121(C), pages 533-544.
    12. Syed Ahmed Kabir, Ijaz Fazil & Ng, E.Y.K., 2017. "Insight into stall delay and computation of 3D sectional aerofoil characteristics of NREL phase VI wind turbine using inverse BEM and improvement in BEM analysis accounting for stall delay effect," Energy, Elsevier, vol. 120(C), pages 518-536.
    13. Abdulqadir, Sherwan A. & Iacovides, Hector & Nasser, Adel, 2017. "The physical modelling and aerodynamics of turbulent flows around horizontal axis wind turbines," Energy, Elsevier, vol. 119(C), pages 767-799.
    14. Takaaki Kono & Satoshi Nebucho & Tetsuya Kogaki & Takahiro Kiwata & Shigeo Kimura & Nobuyoshi Komatsu, 2017. "Numerical Analysis of the Effects of Rotating Wind Turbine Blades on the Aerodynamic Forces Acting on Tower," Energies, MDPI, vol. 10(1), pages 1-18, January.
    15. Zhang, Dongqin & Liu, Zhenqing & Li, Weipeng & Hu, Gang, 2023. "LES simulation study of wind turbine aerodynamic characteristics with fluid-structure interaction analysis considering blade and tower flexibility," Energy, Elsevier, vol. 282(C).
    16. Bai, Chi-Jeng & Wang, Wei-Cheng, 2016. "Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 506-519.
    17. Veisi, Amin Allah & Shafiei Mayam, Mohammad Hossein, 2017. "Effects of blade rotation direction in the wake region of two in-line turbines using Large Eddy Simulation," Applied Energy, Elsevier, vol. 197(C), pages 375-392.
    18. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    19. Lei, Hang & Zhou, Dai & Lu, Jiabao & Chen, Caiyong & Han, Zhaolong & Bao, Yan, 2017. "The impact of pitch motion of a platform on the aerodynamic performance of a floating vertical axis wind turbine," Energy, Elsevier, vol. 119(C), pages 369-383.
    20. Li, Qing'an & Kamada, Yasunari & Maeda, Takao & Murata, Junsuke & Nishida, Yusuke, 2016. "Visualization of the flow field and aerodynamic force on a Horizontal Axis Wind Turbine in turbulent inflows," Energy, Elsevier, vol. 111(C), pages 57-67.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:945-:d:104015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.