IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i5p625-d97551.html
   My bibliography  Save this article

Optimal Allocation of Energy Storage System Considering Multi-Correlated Wind Farms

Author

Listed:
  • Shuli Wen

    (College of Automation, Harbin Engineering University, Harbin 150001, China)

  • Hai Lan

    (College of Automation, Harbin Engineering University, Harbin 150001, China)

  • Qiang Fu

    (Department of Electrical Engineering and Computer Science, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA)

  • David C. Yu

    (Department of Electrical Engineering and Computer Science, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA)

  • Ying-Yi Hong

    (Department of Electrical Engineering, Chung Yuan Christian University, Chung Li District, Taoyuan City 32023, Taiwan)

  • Peng Cheng

    (College of Automation, Harbin Engineering University, Harbin 150001, China)

Abstract

With the increasing penetration of wind power, not only the uncertainties but also the correlation among the wind farms should be considered in the power system analysis. In this paper, Clayton-Copula method is developed to model the multiple correlated wind distribution and a new point estimation method (PEM) is proposed to discretize the multi-correlated wind distribution. Furthermore, combining the proposed modeling and discretizing method with Hybrid Multi-Objective Particle Swarm Optimization (HMOPSO), a comprehensive algorithm is explored to minimize the power system cost and the emissions by searching the best placements and sizes of energy storage system (ESS) considering wind power uncertainties in multi-correlated wind farms. In addition, the variations of load are also taken into account. The IEEE 57-bus system is adopted to perform case studies using the proposed approach. The results clearly demonstrate the effectiveness of the proposed algorithm in determining the optimal storage allocations considering multi-correlated wind farms.

Suggested Citation

  • Shuli Wen & Hai Lan & Qiang Fu & David C. Yu & Ying-Yi Hong & Peng Cheng, 2017. "Optimal Allocation of Energy Storage System Considering Multi-Correlated Wind Farms," Energies, MDPI, vol. 10(5), pages 1-16, May.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:5:p:625-:d:97551
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/5/625/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/5/625/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Segers, Johan, 2015. "Hybrid copula estimators," LIDAM Reprints ISBA 2015005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Jae-Kun Lyu & Jae-Haeng Heo & Jong-Keun Park & Yong-Cheol Kang, 2013. "Probabilistic Approach to Optimizing Active and Reactive Power Flow in Wind Farms Considering Wake Effects," Energies, MDPI, vol. 6(11), pages 1-21, October.
    3. Koirala, Krishna H. & Mishra, Ashok K. & D'Antoni, Jeremy M. & Mehlhorn, Joey E., 2015. "Energy prices and agricultural commodity prices: Testing correlation using copulas method," Energy, Elsevier, vol. 81(C), pages 430-436.
    4. Arjmand, Reza & Rahimiyan, Morteza, 2016. "Statistical analysis of a competitive day-ahead market coupled with correlated wind production and electric load," Applied Energy, Elsevier, vol. 161(C), pages 153-167.
    5. Moghaddam, Amjad Anvari & Seifi, Alireza & Niknam, Taher, 2012. "Multi-operation management of a typical micro-grids using Particle Swarm Optimization: A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1268-1281.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed Alzahrani & Hussain Alharthi & Muhammad Khalid, 2019. "Minimization of Power Losses through Optimal Battery Placement in a Distributed Network with High Penetration of Photovoltaics," Energies, MDPI, vol. 13(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yip, Pick Schen & Brooks, Robert & Do, Hung Xuan & Nguyen, Duc Khuong, 2020. "Dynamic volatility spillover effects between oil and agricultural products," International Review of Financial Analysis, Elsevier, vol. 69(C).
    2. Portier, François & Segers, Johan, 2018. "On the weak convergence of the empirical conditional copula under a simplifying assumption," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 160-181.
    3. Tule, Moses K. & Salisu, Afees A. & Chiemeke, Charles C., 2019. "Can agricultural commodity prices predict Nigeria's inflation?," Journal of Commodity Markets, Elsevier, vol. 16(C).
    4. Fatima Palacios‐Rodriguez & Elena Di Bernardino & Melina Mailhot, 2023. "Smooth copula‐based generalized extreme value model and spatial interpolation for extreme rainfall in Central Eastern Canada," Environmetrics, John Wiley & Sons, Ltd., vol. 34(3), May.
    5. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation," Applied Energy, Elsevier, vol. 99(C), pages 455-470.
    6. Jingye Li, 2021. "The Effect of Oil Price on China’s Grain Prices: a VAR model," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 11(1), pages 1-5.
    7. Jebabli, Ikram & Roubaud, David, 2018. "Time-varying efficiency in food and energy markets: Evidence and implications," Economic Modelling, Elsevier, vol. 70(C), pages 97-114.
    8. Fathy, Ahmed, 2023. "Bald eagle search optimizer-based energy management strategy for microgrid with renewable sources and electric vehicles," Applied Energy, Elsevier, vol. 334(C).
    9. Taghizadeh-Hesary, Farhad & Rasoulinezhad, Ehsan & Yoshino, Naoyuki, 2019. "Energy and Food Security: Linkages through Price Volatility," Energy Policy, Elsevier, vol. 128(C), pages 796-806.
    10. Luca Cattivelli & Federico Antonioli, 2023. "When cointegration is interrupted: Price transmission analysis in the Italian dairy‐feed industry," Agribusiness, John Wiley & Sons, Ltd., vol. 39(3), pages 744-761, July.
    11. Izadbakhsh, Maziar & Gandomkar, Majid & Rezvani, Alireza & Ahmadi, Abdollah, 2015. "Short-term resource scheduling of a renewable energy based micro grid," Renewable Energy, Elsevier, vol. 75(C), pages 598-606.
    12. Asier González-González & Ismael Etxeberria-Agiriano & Ekaitz Zulueta & Fernando Oterino-Echavarri & Jose Manuel Lopez-Guede, 2014. "Pitch Based Wind Turbine Intelligent Speed Setpoint Adjustment Algorithms," Energies, MDPI, vol. 7(6), pages 1-17, June.
    13. Dervis Kirikkaleli & Hasan Güngör, 2021. "Co-movement of commodity price indexes and energy price index: a wavelet coherence approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-18, December.
    14. Sun, Yunpeng & Gao, Pengpeng & Raza, Syed Ali & Shah, Nida & Sharif, Arshian, 2023. "The asymmetric effects of oil price shocks on the world food prices: Fresh evidence from quantile-on-quantile regression approach," Energy, Elsevier, vol. 270(C).
    15. Tingli Cheng & Minyou Chen & Yingxiang Wang & Bo Li & Muhammad Arshad Shehzad Hassan & Tao Chen & Ruilin Xu, 2018. "Adaptive Robust Method for Dynamic Economic Emission Dispatch Incorporating Renewable Energy and Energy Storage," Complexity, Hindawi, vol. 2018, pages 1-13, June.
    16. Zimmer, Yelto & Marques, Giulio V., 2021. "Energy cost to produce and transport crops – The driver for crop prices? Case study for Mato Grosso, Brazil," Energy, Elsevier, vol. 225(C).
    17. Ou, Shiqi & Lin, Zhenhong & Xu, Guoquan & Hao, Xu & Li, Hongwei & Gao, Zhiming & He, Xin & Przesmitzki, Steven & Bouchard, Jessey, 2020. "The retailed gasoline price in China: Time-series analysis and future trend projection," Energy, Elsevier, vol. 191(C).
    18. Deihimi, Ali & Keshavarz Zahed, Babak & Iravani, Reza, 2016. "An interactive operation management of a micro-grid with multiple distributed generations using multi-objective uniform water cycle algorithm," Energy, Elsevier, vol. 106(C), pages 482-509.
    19. Samuel Nicoara & Daniel Manațe, 2022. "The Impact of Rising Oil Prices on Agricultural Products," Ovidius University Annals, Economic Sciences Series, Ovidius University of Constantza, Faculty of Economic Sciences, vol. 0(1), pages 386-389, September.
    20. Hokey Min, 2022. "Examining the Impact of Energy Price Volatility on Commodity Prices from Energy Supply Chain Perspectives," Energies, MDPI, vol. 15(21), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:5:p:625-:d:97551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.