IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i5p597-d97138.html
   My bibliography  Save this article

A Data-Driven Learning-Based Continuous-Time Estimation and Simulation Method for Energy Efficiency and Coulombic Efficiency of Lithium Ion Batteries

Author

Listed:
  • Yuechen Liu

    (National Active Distribution Network Technology Research Center, Beijing Jiaotong University, Beijing 100044, China
    Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing Jiaotong University, Beijing 100044, China
    Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195-2700, USA)

  • Linjing Zhang

    (National Active Distribution Network Technology Research Center, Beijing Jiaotong University, Beijing 100044, China
    Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing Jiaotong University, Beijing 100044, China)

  • Jiuchun Jiang

    (National Active Distribution Network Technology Research Center, Beijing Jiaotong University, Beijing 100044, China
    Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing Jiaotong University, Beijing 100044, China)

  • Shaoyuan Wei

    (National Active Distribution Network Technology Research Center, Beijing Jiaotong University, Beijing 100044, China
    Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing Jiaotong University, Beijing 100044, China)

  • Sijia Liu

    (National Active Distribution Network Technology Research Center, Beijing Jiaotong University, Beijing 100044, China
    Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing Jiaotong University, Beijing 100044, China)

  • Weige Zhang

    (National Active Distribution Network Technology Research Center, Beijing Jiaotong University, Beijing 100044, China
    Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing Jiaotong University, Beijing 100044, China)

Abstract

Lithium ion (Li-ion) batteries work as the basic energy storage components in modern railway systems, hence estimating and improving battery efficiency is a critical issue in optimizing the energy usage strategy. However, it is difficult to estimate the efficiency of lithium ion batteries accurately since it varies continuously under working conditions and is unmeasurable via experiments. This paper offers a learning-based simulation method that employs experimental data to estimate the continuous-time energy efficiency and coulombic efficiency of lithium ion batteries, taking lithium titanate batteries as an example. The state of charge (SOC) regions and discharge current rates are considered as the main variables that may affect the efficiencies. Over eight million empirical datasets are collected during a series of experiments performed to investigate the efficiency variation. A back propagation (BP) neural network efficiency estimation and simulation model is proposed to estimate the continuous-time energy efficiency and coulombic efficiency. The empirical data collected in the experiments are used to train the BP network model, which reveals a test error of 10 −4 . With the input of continuous SOC regions and discharge currents, continuous-time efficiency can be estimated by the trained BP network model. The estimated and simulated result is proven to be consistent with the experimental results.

Suggested Citation

  • Yuechen Liu & Linjing Zhang & Jiuchun Jiang & Shaoyuan Wei & Sijia Liu & Weige Zhang, 2017. "A Data-Driven Learning-Based Continuous-Time Estimation and Simulation Method for Energy Efficiency and Coulombic Efficiency of Lithium Ion Batteries," Energies, MDPI, vol. 10(5), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:5:p:597-:d:97138
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/5/597/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/5/597/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hongwen He & Hui Jia & Weiwei Huo & Fengchun Sun, 2017. "Field Synergy Analysis and Optimization of the Thermal Behavior of Lithium Ion Battery Packs," Energies, MDPI, vol. 10(1), pages 1-10, January.
    2. Kang, Jianqiang & Yan, Fuwu & Zhang, Pei & Du, Changqing, 2014. "Comparison of comprehensive properties of Ni-MH (nickel-metal hydride) and Li-ion (lithium-ion) batteries in terms of energy efficiency," Energy, Elsevier, vol. 70(C), pages 618-625.
    3. Shifei Yuan & Hongjie Wu & Chengliang Yin, 2013. "State of Charge Estimation Using the Extended Kalman Filter for Battery Management Systems Based on the ARX Battery Model," Energies, MDPI, vol. 6(1), pages 1-27, January.
    4. J.-M. Tarascon & M. Armand, 2001. "Issues and challenges facing rechargeable lithium batteries," Nature, Nature, vol. 414(6861), pages 359-367, November.
    5. Yinjiao Xing & Eden W. M. Ma & Kwok L. Tsui & Michael Pecht, 2011. "Battery Management Systems in Electric and Hybrid Vehicles," Energies, MDPI, vol. 4(11), pages 1-18, October.
    6. Ming-Hui Chang & Han-Pang Huang & Shu-Wei Chang, 2013. "A New State of Charge Estimation Method for LiFePO 4 Battery Packs Used in Robots," Energies, MDPI, vol. 6(4), pages 1-24, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hossam M. Hussein & Ahmed Aghmadi & Mahmoud S. Abdelrahman & S M Sajjad Hossain Rafin & Osama Mohammed, 2024. "A review of battery state of charge estimation and management systems: Models and future prospective," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(1), January.
    2. Zhongbao Wei & Feng Leng & Zhongjie He & Wenyu Zhang & Kaiyuan Li, 2018. "Online State of Charge and State of Health Estimation for a Lithium-Ion Battery Based on a Data–Model Fusion Method," Energies, MDPI, vol. 11(7), pages 1-16, July.
    3. Renxin, Xiao & Yi, Yang & Xianguang, Jia & Nan, Pan, 2023. "Collaborative estimations of state of energy and maximum available energy of lithium-ion batteries with optimized time windows considering instantaneous energy efficiencies," Energy, Elsevier, vol. 274(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ines Baccouche & Sabeur Jemmali & Bilal Manai & Noshin Omar & Najoua Essoukri Ben Amara, 2017. "Improved OCV Model of a Li-Ion NMC Battery for Online SOC Estimation Using the Extended Kalman Filter," Energies, MDPI, vol. 10(6), pages 1-22, May.
    2. Van Quan Dao & Minh-Chau Dinh & Chang Soon Kim & Minwon Park & Chil-Hoon Doh & Jeong Hyo Bae & Myung-Kwan Lee & Jianyong Liu & Zhiguo Bai, 2021. "Design of an Effective State of Charge Estimation Method for a Lithium-Ion Battery Pack Using Extended Kalman Filter and Artificial Neural Network," Energies, MDPI, vol. 14(9), pages 1-20, May.
    3. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    4. Zhiwei He & Mingyu Gao & Caisheng Wang & Leyi Wang & Yuanyuan Liu, 2013. "Adaptive State of Charge Estimation for Li-Ion Batteries Based on an Unscented Kalman Filter with an Enhanced Battery Model," Energies, MDPI, vol. 6(8), pages 1-18, August.
    5. Nicolae Tudoroiu & Mohammed Zaheeruddin & Roxana-Elena Tudoroiu, 2020. "Real Time Design and Implementation of State of Charge Estimators for a Rechargeable Lithium-Ion Cobalt Battery with Applicability in HEVs/EVs—A Comparative Study," Energies, MDPI, vol. 13(11), pages 1-45, May.
    6. Rajib Mahamud & Chanwoo Park, 2022. "Theory and Practices of Li-Ion Battery Thermal Management for Electric and Hybrid Electric Vehicles," Energies, MDPI, vol. 15(11), pages 1-45, May.
    7. Wang, Shaofeng & Zhu, Yanping & Xu, Xiaomin & Sunarso, Jaka & Shao, Zongping, 2017. "Adsorption-based synthesis of Co3O4/C composite anode for high performance lithium-ion batteries," Energy, Elsevier, vol. 125(C), pages 569-575.
    8. Miquel Martí-Florences & Andreu Cecilia & Ramon Costa-Castelló, 2023. "Modelling and Estimation in Lithium-Ion Batteries: A Literature Review," Energies, MDPI, vol. 16(19), pages 1-36, September.
    9. Saiteja, Pemmareddy & Ashok, B., 2022. "Critical review on structural architecture, energy control strategies and development process towards optimal energy management in hybrid vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    10. Groenewald, Jakobus & Grandjean, Thomas & Marco, James, 2017. "Accelerated energy capacity measurement of lithium-ion cells to support future circular economy strategies for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 98-111.
    11. Zhibing Zeng & Jindong Tian & Dong Li & Yong Tian, 2018. "An Online State of Charge Estimation Algorithm for Lithium-Ion Batteries Using an Improved Adaptive Cubature Kalman Filter," Energies, MDPI, vol. 11(1), pages 1-16, January.
    12. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Okay, Kamil & Eray, Sermet & Eray, Aynur, 2022. "Development of prototype battery management system for PV system," Renewable Energy, Elsevier, vol. 181(C), pages 1294-1304.
    14. F. Isorna Llerena & E. López González & J. J. Caparrós Mancera & F. Segura Manzano & J. M. Andújar, 2021. "Hydrogen vs. Battery-Based Propulsion Systems in Unipersonal Vehicles—Developing Solutions to Improve the Sustainability of Urban Mobility," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    15. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    16. Chao Wang & Ming Liu & Michel Thijs & Frans G. B. Ooms & Swapna Ganapathy & Marnix Wagemaker, 2021. "High dielectric barium titanate porous scaffold for efficient Li metal cycling in anode-free cells," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    17. Mazhar Abbas & Eung-sang Kim & Seul-ki Kim & Yun-su Kim, 2016. "Comparative Analysis of Battery Behavior with Different Modes of Discharge for Optimal Capacity Sizing and BMS Operation," Energies, MDPI, vol. 9(10), pages 1-19, October.
    18. Jiang, Yunfeng & Xia, Bing & Zhao, Xin & Nguyen, Truong & Mi, Chris & de Callafon, Raymond A., 2017. "Data-based fractional differential models for non-linear dynamic modeling of a lithium-ion battery," Energy, Elsevier, vol. 135(C), pages 171-181.
    19. Liao, Xiaolin & Sun, Peiyi & Xu, Mengqing & Xing, Lidan & Liao, Youhao & Zhang, Liping & Yu, Le & Fan, Weizhen & Li, Weishan, 2016. "Application of tris(trimethylsilyl)borate to suppress self-discharge of layered nickel cobalt manganese oxide for high energy battery," Applied Energy, Elsevier, vol. 175(C), pages 505-511.
    20. Nimalsiri, Nanduni I. & Ratnam, Elizabeth L. & Mediwaththe, Chathurika P. & Smith, David B. & Halgamuge, Saman K., 2021. "Coordinated charging and discharging control of electric vehicles to manage supply voltages in distribution networks: Assessing the customer benefit," Applied Energy, Elsevier, vol. 291(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:5:p:597-:d:97138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.