IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i1p81-d87553.html
   My bibliography  Save this article

Field Synergy Analysis and Optimization of the Thermal Behavior of Lithium Ion Battery Packs

Author

Listed:
  • Hongwen He

    (National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology, Beijing 100081, China
    Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing Institute of Technology, Beijing 100081, China)

  • Hui Jia

    (National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology, Beijing 100081, China
    Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing Institute of Technology, Beijing 100081, China)

  • Weiwei Huo

    (National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology, Beijing 100081, China
    Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing Institute of Technology, Beijing 100081, China)

  • Fengchun Sun

    (National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology, Beijing 100081, China
    Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing Institute of Technology, Beijing 100081, China)

Abstract

In this study, a three dimensional (3D) modeling has been built for a lithium ion battery pack using the field synergy principle to obtain a better thermal distribution. In the model, the thermal behavior of the battery pack was studied by reducing the maximum temperature, improving the temperature uniformity and considering the difference between the maximum and maximum temperature of the battery pack. The method is further verified by simulation results based on different environmental temperatures and discharge rates. The thermal behavior model demonstrates that the design and cooling policy of the battery pack is crucial for optimizing the air-outlet patterns of electric vehicle power cabins.

Suggested Citation

  • Hongwen He & Hui Jia & Weiwei Huo & Fengchun Sun, 2017. "Field Synergy Analysis and Optimization of the Thermal Behavior of Lithium Ion Battery Packs," Energies, MDPI, vol. 10(1), pages 1-10, January.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:1:p:81-:d:87553
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/1/81/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/1/81/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Zeyu & Xiong, Rui & Tian, Jinpeng & Shang, Xiong & Lu, Jiahuan, 2016. "Model-based fault diagnosis approach on external short circuit of lithium-ion battery used in electric vehicles," Applied Energy, Elsevier, vol. 184(C), pages 365-374.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuechen Liu & Linjing Zhang & Jiuchun Jiang & Shaoyuan Wei & Sijia Liu & Weige Zhang, 2017. "A Data-Driven Learning-Based Continuous-Time Estimation and Simulation Method for Energy Efficiency and Coulombic Efficiency of Lithium Ion Batteries," Energies, MDPI, vol. 10(5), pages 1-15, April.
    2. Kai Chen & Zeyu Li & Yiming Chen & Shuming Long & Junsheng Hou & Mengxuan Song & Shuangfeng Wang, 2017. "Design of Parallel Air-Cooled Battery Thermal Management System through Numerical Study," Energies, MDPI, vol. 10(10), pages 1-22, October.
    3. Rajib Mahamud & Chanwoo Park, 2022. "Theory and Practices of Li-Ion Battery Thermal Management for Electric and Hybrid Electric Vehicles," Energies, MDPI, vol. 15(11), pages 1-45, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Yuan-wu & Wu, Xiao-long & Zhong, Xiao-bo & Zhao, Dong-qi & Sorrentino, Marco & Jiang, Jianhua & Jiang, Chang & Fu, Xiaowei & Li, Xi, 2021. "Mechanism model-based and data-driven approach for the diagnosis of solid oxide fuel cell stack leakage," Applied Energy, Elsevier, vol. 286(C).
    2. Yu, Quanqing & Dai, Lei & Xiong, Rui & Chen, Zeyu & Zhang, Xin & Shen, Weixiang, 2022. "Current sensor fault diagnosis method based on an improved equivalent circuit battery model," Applied Energy, Elsevier, vol. 310(C).
    3. Ma, Mina & Wang, Yu & Duan, Qiangling & Wu, Tangqin & Sun, Jinhua & Wang, Qingsong, 2018. "Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis," Energy, Elsevier, vol. 164(C), pages 745-756.
    4. Xiong, Rui & Sun, Wanzhou & Yu, Quanqing & Sun, Fengchun, 2020. "Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles," Applied Energy, Elsevier, vol. 279(C).
    5. Fan Zhang & Xiao Zheng & Zixuan Xing & Minghu Wu, 2024. "Fault Diagnosis Method for Lithium-Ion Power Battery Incorporating Multidimensional Fault Features," Energies, MDPI, vol. 17(7), pages 1-21, March.
    6. Shen, Dongxu & Lyu, Chao & Yang, Dazhi & Hinds, Gareth & Wang, Lixin, 2023. "Connection fault diagnosis for lithium-ion battery packs in electric vehicles based on mechanical vibration signals and broad belief network," Energy, Elsevier, vol. 274(C).
    7. Yunfeng Jiang & Louis J. Shrinkle & Raymond A. de Callafon, 2019. "Autonomous Demand-Side Current Scheduling of Parallel Buck Regulated Battery Modules," Energies, MDPI, vol. 12(11), pages 1-20, May.
    8. Park, Jae-Do & Roane, Timberley M. & Ren, Zhiyong Jason & Alaraj, Muhannad, 2017. "Dynamic modeling of a microbial fuel cell considering anodic electron flow and electrical charge storage," Applied Energy, Elsevier, vol. 193(C), pages 507-514.
    9. Jiang, Lulu & Deng, Zhongwei & Tang, Xiaolin & Hu, Lin & Lin, Xianke & Hu, Xiaosong, 2021. "Data-driven fault diagnosis and thermal runaway warning for battery packs using real-world vehicle data," Energy, Elsevier, vol. 234(C).
    10. Zhao, Hongqian & Chen, Zheng & Shu, Xing & Shen, Jiangwei & Liu, Yonggang & Zhang, Yuanjian, 2023. "Multi-step ahead voltage prediction and voltage fault diagnosis based on gated recurrent unit neural network and incremental training," Energy, Elsevier, vol. 266(C).
    11. Tongrui Zhang & Ran Li & Yongqin Zhou, 2023. "Battery Fault Diagnosis Method Based on Online Least Squares Support Vector Machine," Energies, MDPI, vol. 16(21), pages 1-17, October.
    12. Yi Wu & Saurabh Saxena & Yinjiao Xing & Youren Wang & Chuan Li & Winco K. C. Yung & Michael Pecht, 2018. "Analysis of Manufacturing-Induced Defects and Structural Deformations in Lithium-Ion Batteries Using Computed Tomography," Energies, MDPI, vol. 11(4), pages 1-22, April.
    13. Wang, Shuhui & Wang, Zhenpo & Cheng, Ximing & Zhang, Zhaosheng, 2023. "A double-layer fault diagnosis strategy for electric vehicle batteries based on Gaussian mixture model," Energy, Elsevier, vol. 281(C).
    14. Gandoman, Foad H. & Jaguemont, Joris & Goutam, Shovon & Gopalakrishnan, Rahul & Firouz, Yousef & Kalogiannis, Theodoros & Omar, Noshin & Van Mierlo, Joeri, 2019. "Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    15. Yu Zang & Wei Shangguan & Baigen Cai & Huashen Wang & Michael G Pecht, 2019. "Methods for fault diagnosis of high-speed railways: A review," Journal of Risk and Reliability, , vol. 233(5), pages 908-922, October.
    16. Sun, Zhenyu & Han, Yang & Wang, Zhenpo & Chen, Yong & Liu, Peng & Qin, Zian & Zhang, Zhaosheng & Wu, Zhiqiang & Song, Chunbao, 2022. "Detection of voltage fault in the battery system of electric vehicles using statistical analysis," Applied Energy, Elsevier, vol. 307(C).
    17. Xu, Jun & Wang, Haitao & Shi, Hu & Mei, Xuesong, 2020. "Multi-scale short circuit resistance estimation method for series connected battery strings," Energy, Elsevier, vol. 202(C).
    18. Chen, Zeyu & Xiong, Rui & Lu, Jiahuan & Li, Xinggang, 2018. "Temperature rise prediction of lithium-ion battery suffering external short circuit for all-climate electric vehicles application," Applied Energy, Elsevier, vol. 213(C), pages 375-383.
    19. Hong, Jichao & Wang, Zhenpo & Yao, Yongtao, 2019. "Fault prognosis of battery system based on accurate voltage abnormity prognosis using long short-term memory neural networks," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    20. Kang, Yongzhe & Duan, Bin & Zhou, Zhongkai & Shang, Yunlong & Zhang, Chenghui, 2020. "Online multi-fault detection and diagnosis for battery packs in electric vehicles," Applied Energy, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:1:p:81-:d:87553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.